Skip to content

[Bug Report]: Krea freezes on startup on H100 #184

@ericxtang

Description

@ericxtang

Summary

I ran into this error while trying to run the Krea model. This results in the output video being SUPER slow.

Screen.Recording.2025-11-24.at.12.55.47.AM.mov

Error:

2025-11-24T06:50:03.707696092Z 2025-11-24 06:50:03,706 - scope.server.frame_processor - ERROR - Error processing chunk: LoweringException: AttributeError: 'ShapeAsConstantBuffer' object has no attribute 'dtype'
2025-11-24T06:50:03.707700975Z   target: flex_attention
2025-11-24T06:50:03.707705647Z   args[0]: TensorBox(StorageBox(
2025-11-24T06:50:03.707712082Z     ComputedBuffer(name='buf5', layout=FlexibleLayout('cuda:0', torch.bfloat16, size=[1, 40, 128*CeilToInt(IntTrueDiv(Max(2160, -s27 + s30 + s47 - Max(0, -s27 + s30 + s47 - 2160) + 2160), 128)), 128], stride=[655360*CeilToInt(IntTrueDiv(Max(2160, -s27 + s30 + s47 - Max(0, -s27 + s30 + s47 - 2160) + 2160), 128)), 16384*CeilToInt(IntTrueDiv(Max(2160, -s27 + s30 + s47 - Max(0, -s27 + s30 + s47 - 2160) + 2160), 128)), 128, 1]), data=Pointwise(device=device(type='cuda', index=0), dtype=torch.bfloat16, inner_fn=<function BaseView.make_loader.<locals>.loader at 0x759fcdee3d00>, ranges=[1, 40, 128*CeilToInt(IntTrueDiv(Max(2160, -s27 + s30 + s47 - Max(0, -s27 + s30 + s47 - 2160) + 2160), 128)), 128]))
2025-11-24T06:50:03.707717092Z   ))
2025-11-24T06:50:03.707721767Z   args[1]: TensorBox(StorageBox(
2025-11-24T06:50:03.707726512Z     ComputedBuffer(name='buf6', layout=FlexibleLayout('cuda:0', torch.bfloat16, size=[1, 40, 128*CeilToInt(IntTrueDiv(Max(2160, -s27 + s30 + s47 - Max(0, -s27 + s30 + s47 - 2160) + 2160), 128)), 128], stride=[655360*CeilToInt(IntTrueDiv(Max(2160, -s27 + s30 + s47 - Max(0, -s27 + s30 + s47 - 2160) + 2160), 128)), 16384*CeilToInt(IntTrueDiv(Max(2160, -s27 + s30 + s47 - Max(0, -s27 + s30 + s47 - 2160) + 2160), 128)), 128, 1]), data=Pointwise(device=device(type='cuda', index=0), dtype=torch.bfloat16, inner_fn=<function BaseView.make_loader.<locals>.loader at 0x759e583e4700>, ranges=[1, 40, 128*CeilToInt(IntTrueDiv(Max(2160, -s27 + s30 + s47 - Max(0, -s27 + s30 + s47 - 2160) + 2160), 128)), 128]))
2025-11-24T06:50:03.707731309Z   ))
2025-11-24T06:50:03.707735926Z   args[2]: TensorBox(StorageBox(
2025-11-24T06:50:03.707741585Z     ComputedBuffer(name='buf7', layout=FlexibleLayout('cuda:0', torch.bfloat16, size=[1, 40, 128*CeilToInt(IntTrueDiv(Max(2160, -s27 + s30 + s47 - Max(0, -s27 + s30 + s47 - 2160) + 2160), 128)), 128], stride=[655360*CeilToInt(IntTrueDiv(Max(2160, -s27 + s30 + s47 - Max(0, -s27 + s30 + s47 - 2160) + 2160), 128)), 16384*CeilToInt(IntTrueDiv(Max(2160, -s27 + s30 + s47 - Max(0, -s27 + s30 + s47 - 2160) + 2160), 128)), 128, 1]), data=Pointwise(device=device(type='cuda', index=0), dtype=torch.bfloat16, inner_fn=<function BaseView.make_loader.<locals>.loader at 0x759e583e55a0>, ranges=[1, 40, 128*CeilToInt(IntTrueDiv(Max(2160, -s27 + s30 + s47 - Max(0, -s27 + s30 + s47 - 2160) + 2160), 128)), 128]))
2025-11-24T06:50:03.707751018Z   ))
2025-11-24T06:50:03.707756166Z   args[3]: Subgraph(name='sdpa_score0', graph_module=<lambda>(), graph=None)
2025-11-24T06:50:03.707760923Z   args[4]: (1, 1, TensorBox(StorageBox(
2025-11-24T06:50:03.707765665Z     ComputedBuffer(name='buf8', layout=FlexibleLayout('cuda:0', torch.int32, size=[1, 1, 1], stride=[1, 1, 1]), data=Pointwise(device=device(type='cuda', index=0), dtype=torch.int32, inner_fn=<function _full.<locals>.inner_fn at 0x759e583e7370>, ranges=[1, 1, 1]))
2025-11-24T06:50:03.707770496Z   )), TensorBox(StorageBox(
2025-11-24T06:50:03.707775157Z     ComputedBuffer(name='buf9', layout=FlexibleLayout('cuda:0', torch.int32, size=[1, 1, 1, 1], stride=[1, 1, 1, 1]), data=Pointwise(device=device(type='cuda', index=0), dtype=torch.int32, inner_fn=<function _full.<locals>.inner_fn at 0x759e583e5870>, ranges=[1, 1, 1, 1]))
2025-11-24T06:50:03.707779978Z   )), None, None, TensorBox(StorageBox(
2025-11-24T06:50:03.707784569Z     ComputedBuffer(name='buf10', layout=FlexibleLayout('cuda:0', torch.int32, size=[1, 1, 1], stride=[1, 1, 1]), data=Pointwise(device=device(type='cuda', index=0), dtype=torch.int32, inner_fn=<function make_pointwise.<locals>.inner.<locals>.inner_fn at 0x759fcdee27a0>, ranges=[1, 1, 1]))
2025-11-24T06:50:03.707789306Z   )), TensorBox(StorageBox(
2025-11-24T06:50:03.707794306Z     ComputedBuffer(name='buf11', layout=FlexibleLayout('cuda:0', torch.int32, size=[1, 1, 1, 1], stride=[1, 1, 1, 1]), data=Pointwise(device=device(type='cuda', index=0), dtype=torch.int32, inner_fn=<function make_pointwise.<locals>.inner.<locals>.inner_fn at 0x759fcdee0040>, ranges=[1, 1, 1, 1]))
2025-11-24T06:50:03.707799113Z   )), None, None, 1073741824, 1073741824, Subgraph(name='sdpa_mask0', graph_module=<lambda>(), graph=None))
2025-11-24T06:50:03.707803803Z   args[5]: 0.08838834764831843
2025-11-24T06:50:03.707808346Z   args[6]: {'PRESCALE_QK': False, 'ROWS_GUARANTEED_SAFE': False, 'BLOCKS_ARE_CONTIGUOUS': False, 'WRITE_DQ': True, 'OUTPUT_LOGSUMEXP': False}
2025-11-24T06:50:03.707813072Z   args[7]: (TensorBox(StorageBox(
2025-11-24T06:50:03.707817609Z     ComputedBuffer(name='buf4', layout=FlexibleLayout('cuda:0', torch.int32, size=[], stride=[]), data=Pointwise(device=device(type='cuda', index=0), dtype=torch.int32, inner_fn=<function _full.<locals>.inner_fn at 0x759fcdee00d0>, ranges=[]))
2025-11-24T06:50:03.707823124Z   )), -s27 + s30 + s47 - Max(0, -s27 + s30 + s47 - 2160))
2025-11-24T06:50:03.707827952Z   args[8]: ()
2025-11-24T06:50:03.707837419Z Set TORCHDYNAMO_VERBOSE=1 for the internal stack trace (please do this especially if you're reporting a bug to PyTorch). For even more developer context, set TORCH_LOGS="+dynamo"
2025-11-24T06:50:03.707842070Z Traceback (most recent call last):
2025-11-24T06:50:03.707846587Z   File "/app/src/scope/server/frame_processor.py", line 285, in process_chunk
2025-11-24T06:50:03.707851420Z     output = pipeline(**call_params)
2025-11-24T06:50:03.707855943Z   File "/app/src/scope/core/pipelines/krea_realtime_video/pipeline.py", line 161, in __call__
2025-11-24T06:50:03.707860427Z     return self._generate(**kwargs)
2025-11-24T06:50:03.707864911Z   File "/app/src/scope/core/pipelines/krea_realtime_video/pipeline.py", line 184, in _generate
2025-11-24T06:50:03.707869728Z     _, self.state = self.blocks(self.components, self.state)
2025-11-24T06:50:03.707874294Z   File "/app/.venv/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 120, in decorate_context
2025-11-24T06:50:03.707879064Z     return func(*args, **kwargs)
2025-11-24T06:50:03.707883578Z   File "/app/.venv/lib/python3.10/site-packages/diffusers/modular_pipelines/modular_pipeline.py", line 917, in __call__
2025-11-24T06:50:03.707892360Z     pipeline, state = block(pipeline, state)
2025-11-24T06:50:03.707897124Z   File "/app/.venv/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 120, in decorate_context
2025-11-24T06:50:03.707901849Z     return func(*args, **kwargs)
2025-11-24T06:50:03.707906391Z   File "/app/src/scope/core/pipelines/wan2_1/blocks/denoise.py", line 163, in __call__
2025-11-24T06:50:03.707911255Z     _, denoised_pred = components.generator(
2025-11-24T06:50:03.707916001Z   File "/app/.venv/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1773, in _wrapped_call_impl
2025-11-24T06:50:03.707920708Z     return self._call_impl(*args, **kwargs)
2025-11-24T06:50:03.707925501Z   File "/app/.venv/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1784, in _call_impl
2025-11-24T06:50:03.707930512Z     return forward_call(*args, **kwargs)
2025-11-24T06:50:03.707935055Z   File "/app/src/scope/core/pipelines/wan2_1/components/generator.py", line 218, in forward
2025-11-24T06:50:03.707939599Z     flow_pred = self._call_model(
2025-11-24T06:50:03.707944145Z   File "/app/src/scope/core/pipelines/wan2_1/components/generator.py", line 189, in _call_model
2025-11-24T06:50:03.707948701Z     return self.model(*args, **accepted)
2025-11-24T06:50:03.707956570Z   File "/app/.venv/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1773, in _wrapped_call_impl
2025-11-24T06:50:03.707961365Z     return self._call_impl(*args, **kwargs)
2025-11-24T06:50:03.707967096Z   File "/app/.venv/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1784, in _call_impl
2025-11-24T06:50:03.707971909Z     return forward_call(*args, **kwargs)
2025-11-24T06:50:03.707976625Z   File "/app/src/scope/core/pipelines/krea_realtime_video/modules/causal_model.py", line 1439, in forward
2025-11-24T06:50:03.707981452Z     result = self._forward_inference(*args, **kwargs)
2025-11-24T06:50:03.707985972Z   File "/app/src/scope/core/pipelines/krea_realtime_video/modules/causal_model.py", line 1237, in _forward_inference
2025-11-24T06:50:03.707990802Z     x = block(x, **kwargs)
2025-11-24T06:50:03.707998069Z   File "/app/.venv/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1771, in _wrapped_call_impl
2025-11-24T06:50:03.708003007Z     return self._compiled_call_impl(*args, **kwargs)  # type: ignore[misc]
2025-11-24T06:50:03.708007715Z   File "/app/.venv/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 749, in compile_wrapper
2025-11-24T06:50:03.708012430Z     raise e.remove_dynamo_frames() from None  # see TORCHDYNAMO_VERBOSE=1
2025-11-24T06:50:03.708017030Z   File "/app/.venv/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 923, in _compile_fx_inner
2025-11-24T06:50:03.708021697Z     raise InductorError(e, currentframe()).with_traceback(
2025-11-24T06:50:03.708026216Z   File "/app/.venv/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 907, in _compile_fx_inner
2025-11-24T06:50:03.708030870Z     mb_compiled_graph = fx_codegen_and_compile(
2025-11-24T06:50:03.708035341Z   File "/app/.venv/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 1578, in fx_codegen_and_compile
2025-11-24T06:50:03.708039971Z     return scheme.codegen_and_compile(gm, example_inputs, inputs_to_check, graph_kwargs)
2025-11-24T06:50:03.708044561Z   File "/app/.venv/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 1377, in codegen_and_compile
2025-11-24T06:50:03.708049121Z     graph.run(*example_inputs)
2025-11-24T06:50:03.708053743Z   File "/app/.venv/lib/python3.10/site-packages/torch/_inductor/graph.py", line 921, in run
2025-11-24T06:50:03.708058230Z     return super().run(*args)
2025-11-24T06:50:03.708062807Z   File "/app/.venv/lib/python3.10/site-packages/torch/fx/interpreter.py", line 173, in run
2025-11-24T06:50:03.708067381Z     self.env[node] = self.run_node(node)
2025-11-24T06:50:03.708071958Z   File "/app/.venv/lib/python3.10/site-packages/torch/_inductor/graph.py", line 1599, in run_node
2025-11-24T06:50:03.708076591Z     result = super().run_node(n)
2025-11-24T06:50:03.708081457Z   File "/app/.venv/lib/python3.10/site-packages/torch/fx/interpreter.py", line 242, in run_node
2025-11-24T06:50:03.708090198Z     return getattr(self, n.op)(n.target, args, kwargs)
2025-11-24T06:50:03.708095022Z   File "/app/.venv/lib/python3.10/site-packages/torch/_inductor/graph.py", line 1268, in call_function
2025-11-24T06:50:03.708100471Z     raise LoweringException(e, target, args, kwargs).with_traceback(
2025-11-24T06:50:03.708105084Z   File "/app/.venv/lib/python3.10/site-packages/torch/_inductor/graph.py", line 1258, in call_function
2025-11-24T06:50:03.708109898Z     out = lowerings[target](*args, **kwargs)  # type: ignore[index]
2025-11-24T06:50:03.708114418Z   File "/app/.venv/lib/python3.10/site-packages/torch/_inductor/lowering.py", line 446, in wrapped
2025-11-24T06:50:03.708118951Z     out = decomp_fn(*args, **kwargs)
2025-11-24T06:50:03.708123492Z   File "/app/.venv/lib/python3.10/site-packages/torch/_inductor/kernel/flex_attention.py", line 1413, in flex_attention
2025-11-24T06:50:03.708128374Z     score_mod_other_buffers = maybe_realize(score_mod_other_buffers)
2025-11-24T06:50:03.708132929Z   File "/app/.venv/lib/python3.10/site-packages/torch/_inductor/kernel/flex_attention.py", line 128, in maybe_realize
2025-11-24T06:50:03.708140979Z     return tree_map(
2025-11-24T06:50:03.708145699Z   File "/app/.venv/lib/python3.10/site-packages/torch/utils/_pytree.py", line 1380, in tree_map
2025-11-24T06:50:03.708150328Z     return treespec.unflatten(map(func, *flat_args))
2025-11-24T06:50:03.708154818Z   File "/app/.venv/lib/python3.10/site-packages/torch/utils/_pytree.py", line 1197, in unflatten
2025-11-24T06:50:03.708163032Z     leaves = list(leaves)
2025-11-24T06:50:03.708167638Z   File "/app/.venv/lib/python3.10/site-packages/torch/_inductor/kernel/flex_attention.py", line 130, in <lambda>
2025-11-24T06:50:03.708172396Z     realize_inputs(x)
2025-11-24T06:50:03.708176895Z   File "/app/.venv/lib/python3.10/site-packages/torch/_inductor/select_algorithm.py", line 3146, in realize_inputs
2025-11-24T06:50:03.708181516Z     return ir.ExternKernel.require_stride1(ir.ExternKernel.realize_input(args[0]))
2025-11-24T06:50:03.708186038Z   File "/app/.venv/lib/python3.10/site-packages/torch/_inductor/ir.py", line 5496, in require_stride1
2025-11-24T06:50:03.708190758Z     return cls.copy_input(x)
2025-11-24T06:50:03.708195325Z   File "/app/.venv/lib/python3.10/site-packages/torch/_inductor/ir.py", line 5257, in copy_input
2025-11-24T06:50:03.708199895Z     dtype=x.get_dtype(),
2025-11-24T06:50:03.708204444Z   File "/app/.venv/lib/python3.10/site-packages/torch/_inductor/ir.py", line 581, in get_dtype
2025-11-24T06:50:03.708209033Z     return self.dtype
2025-11-24T06:50:03.708213446Z torch._inductor.exc.InductorError: LoweringException: AttributeError: 'ShapeAsConstantBuffer' object has no attribute 'dtype'
2025-11-24T06:50:03.708218056Z   target: flex_attention
2025-11-24T06:50:03.708222597Z   args[0]: TensorBox(StorageBox(
2025-11-24T06:50:03.708228820Z     ComputedBuffer(name='buf5', layout=FlexibleLayout('cuda:0', torch.bfloat16, size=[1, 40, 128*CeilToInt(IntTrueDiv(Max(2160, -s27 + s30 + s47 - Max(0, -s27 + s30 + s47 - 2160) + 2160), 128)), 128], stride=[655360*CeilToInt(IntTrueDiv(Max(2160, -s27 + s30 + s47 - Max(0, -s27 + s30 + s47 - 2160) + 2160), 128)), 16384*CeilToInt(IntTrueDiv(Max(2160, -s27 + s30 + s47 - Max(0, -s27 + s30 + s47 - 2160) + 2160), 128)), 128, 1]), data=Pointwise(device=device(type='cuda', index=0), dtype=torch.bfloat16, inner_fn=<function BaseView.make_loader.<locals>.loader at 0x759fcdee3d00>, ranges=[1, 40, 128*CeilToInt(IntTrueDiv(Max(2160, -s27 + s30 + s47 - Max(0, -s27 + s30 + s47 - 2160) + 2160), 128)), 128]))
2025-11-24T06:50:03.708233696Z   ))
2025-11-24T06:50:03.708238884Z   args[1]: TensorBox(StorageBox(
2025-11-24T06:50:03.708243740Z     ComputedBuffer(name='buf6', layout=FlexibleLayout('cuda:0', torch.bfloat16, size=[1, 40, 128*CeilToInt(IntTrueDiv(Max(2160, -s27 + s30 + s47 - Max(0, -s27 + s30 + s47 - 2160) + 2160), 128)), 128], stride=[655360*CeilToInt(IntTrueDiv(Max(2160, -s27 + s30 + s47 - Max(0, -s27 + s30 + s47 - 2160) + 2160), 128)), 16384*CeilToInt(IntTrueDiv(Max(2160, -s27 + s30 + s47 - Max(0, -s27 + s30 + s47 - 2160) + 2160), 128)), 128, 1]), data=Pointwise(device=device(type='cuda', index=0), dtype=torch.bfloat16, inner_fn=<function BaseView.make_loader.<locals>.loader at 0x759e583e4700>, ranges=[1, 40, 128*CeilToInt(IntTrueDiv(Max(2160, -s27 + s30 + s47 - Max(0, -s27 + s30 + s47 - 2160) + 2160), 128)), 128]))
2025-11-24T06:50:03.708252266Z   ))
2025-11-24T06:50:03.708257130Z   args[2]: TensorBox(StorageBox(
2025-11-24T06:50:03.708261839Z     ComputedBuffer(name='buf7', layout=FlexibleLayout('cuda:0', torch.bfloat16, size=[1, 40, 128*CeilToInt(IntTrueDiv(Max(2160, -s27 + s30 + s47 - Max(0, -s27 + s30 + s47 - 2160) + 2160), 128)), 128], stride=[655360*CeilToInt(IntTrueDiv(Max(2160, -s27 + s30 + s47 - Max(0, -s27 + s30 + s47 - 2160) + 2160), 128)), 16384*CeilToInt(IntTrueDiv(Max(2160, -s27 + s30 + s47 - Max(0, -s27 + s30 + s47 - 2160) + 2160), 128)), 128, 1]), data=Pointwise(device=device(type='cuda', index=0), dtype=torch.bfloat16, inner_fn=<function BaseView.make_loader.<locals>.loader at 0x759e583e55a0>, ranges=[1, 40, 128*CeilToInt(IntTrueDiv(Max(2160, -s27 + s30 + s47 - Max(0, -s27 + s30 + s47 - 2160) + 2160), 128)), 128]))
2025-11-24T06:50:03.708266630Z   ))
2025-11-24T06:50:03.708272041Z   args[3]: Subgraph(name='sdpa_score0', graph_module=<lambda>(), graph=None)
2025-11-24T06:50:03.708276775Z   args[4]: (1, 1, TensorBox(StorageBox(
2025-11-24T06:50:03.708281401Z     ComputedBuffer(name='buf8', layout=FlexibleLayout('cuda:0', torch.int32, size=[1, 1, 1], stride=[1, 1, 1]), data=Pointwise(device=device(type='cuda', index=0), dtype=torch.int32, inner_fn=<function _full.<locals>.inner_fn at 0x759e583e7370>, ranges=[1, 1, 1]))
2025-11-24T06:50:03.708286491Z   )), TensorBox(StorageBox(
2025-11-24T06:50:03.708291125Z     ComputedBuffer(name='buf9', layout=FlexibleLayout('cuda:0', torch.int32, size=[1, 1, 1, 1], stride=[1, 1, 1, 1]), data=Pointwise(device=device(type='cuda', index=0), dtype=torch.int32, inner_fn=<function _full.<locals>.inner_fn at 0x759e583e5870>, ranges=[1, 1, 1, 1]))
2025-11-24T06:50:03.708298615Z   )), None, None, TensorBox(StorageBox(
2025-11-24T06:50:03.708303191Z     ComputedBuffer(name='buf10', layout=FlexibleLayout('cuda:0', torch.int32, size=[1, 1, 1], stride=[1, 1, 1]), data=Pointwise(device=device(type='cuda', index=0), dtype=torch.int32, inner_fn=<function make_pointwise.<locals>.inner.<locals>.inner_fn at 0x759fcdee27a0>, ranges=[1, 1, 1]))
2025-11-24T06:50:03.708307901Z   )), TensorBox(StorageBox(
2025-11-24T06:50:03.708312785Z     ComputedBuffer(name='buf11', layout=FlexibleLayout('cuda:0', torch.int32, size=[1, 1, 1, 1], stride=[1, 1, 1, 1]), data=Pointwise(device=device(type='cuda', index=0), dtype=torch.int32, inner_fn=<function make_pointwise.<locals>.inner.<locals>.inner_fn at 0x759fcdee0040>, ranges=[1, 1, 1, 1]))
2025-11-24T06:50:03.708317572Z   )), None, None, 1073741824, 1073741824, Subgraph(name='sdpa_mask0', graph_module=<lambda>(), graph=None))
2025-11-24T06:50:03.708322267Z   args[5]: 0.08838834764831843
2025-11-24T06:50:03.708327606Z   args[6]: {'PRESCALE_QK': False, 'ROWS_GUARANTEED_SAFE': False, 'BLOCKS_ARE_CONTIGUOUS': False, 'WRITE_DQ': True, 'OUTPUT_LOGSUMEXP': False}
2025-11-24T06:50:03.708332315Z   args[7]: (TensorBox(StorageBox(
2025-11-24T06:50:03.708336856Z     ComputedBuffer(name='buf4', layout=FlexibleLayout('cuda:0', torch.int32, size=[], stride=[]), data=Pointwise(device=device(type='cuda', index=0), dtype=torch.int32, inner_fn=<function _full.<locals>.inner_fn at 0x759fcdee00d0>, ranges=[]))
2025-11-24T06:50:03.708341506Z   )), -s27 + s30 + s47 - Max(0, -s27 + s30 + s47 - 2160))
2025-11-24T06:50:03.708346132Z   args[8]: ()
2025-11-24T06:50:03.708355995Z Set TORCHDYNAMO_VERBOSE=1 for the internal stack trace (please do this especially if you're reporting a bug to PyTorch). For even more developer context, set TORCH_LOGS="+dynamo"

Platform

Ubuntu

Nvidia GPU

H100

Scope Version

033927b

uv Version

No response

node Version

No response

Metadata

Metadata

Assignees

Labels

bugSomething isn't working

Type

No type

Projects

No projects

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions