-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
f0cb27b
commit 3528924
Showing
7 changed files
with
484 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -13,3 +13,5 @@ | |
|
||
# Dependency directories (remove the comment below to include it) | ||
# vendor/ | ||
|
||
.vscode/* |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
module github.com/davidkleiven/nonlin | ||
|
||
go 1.13 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,141 @@ | ||
package nonlin | ||
|
||
import ( | ||
"math" | ||
) | ||
|
||
// Problem to be solved | ||
type Problem struct { | ||
// F is a function where we seek the solution of F(x) = 0. The value of the function | ||
// should be given to out. out will always be the same length as x. Note that F must | ||
// not modify x. | ||
F func(out, x []float64) | ||
} | ||
|
||
// Result is a result type returned by the solvers. | ||
type Result struct { | ||
// X is the solution vector at termination | ||
X []float64 | ||
|
||
// F is the value the function at termination | ||
F []float64 | ||
|
||
// MaxF is the infinity norm of F | ||
MaxF float64 | ||
|
||
// Converges is True if the convergence criteria are met, otherwise it is False | ||
Converged bool | ||
} | ||
|
||
// Settings is a type that holds parameters required by jfsj algorithm | ||
type Settings struct { | ||
Tol float64 | ||
Maxiter int | ||
} | ||
|
||
func defaultSettings() *Settings { | ||
return &Settings{ | ||
Tol: 1e-10, | ||
Maxiter: 100000, | ||
} | ||
} | ||
|
||
// identify returns the diagonal of the identity matrix | ||
func identity(n int) []float64 { | ||
I := make([]float64, n) | ||
for i := range I { | ||
I[i] = 1.0 | ||
} | ||
return I | ||
} | ||
|
||
func updateG(G []float64, dF []float64, dx []float64) { | ||
dFDotDx := 0.0 | ||
dFGdF := 0.0 | ||
dF4 := 0.0 | ||
for i := range dx { | ||
dFDotDx += dF[i] * dx[i] | ||
dFGdF += dF[i] * G[i] * dF[i] | ||
dF4 += dF[i] * dF[i] * dF[i] * dF[i] | ||
} | ||
|
||
for i := range G { | ||
G[i] += (dFDotDx - dFGdF) * dF[i] * dF[i] / dF4 | ||
} | ||
} | ||
|
||
// JFSJ applies the jacobian free singular jacobian algorithm to solve | ||
// the non-linear system of equations | ||
func JFSJ(p Problem, x []float64, settings *Settings) Result { | ||
G := identity(len(x)) | ||
if settings == nil { | ||
settings = defaultSettings() | ||
} | ||
|
||
work := make([]float64, 3*len(x)) | ||
p.F(work[:len(x)], x) | ||
|
||
var result Result | ||
for i := 0; i < settings.Maxiter; i++ { | ||
// On even iterations F is placed in work[:len(x)], on odd iterations | ||
// F is placed in work[len(x):2*len(x)] | ||
F := work[:len(x)] | ||
if i%2 == 1 { | ||
F = work[len(x) : 2*len(x)] | ||
} | ||
|
||
infNormDx := 0.0 | ||
for j := range x { | ||
dx := -G[j] * F[j] | ||
x[j] += dx | ||
work[2*len(x)+j] = dx | ||
if math.Abs(dx) > infNormDx { | ||
infNormDx = math.Abs(dx) | ||
} | ||
} | ||
|
||
dFArray := work[:len(x)] | ||
if i%2 == 0 { | ||
F = work[len(x) : 2*len(x)] | ||
p.F(F, x) | ||
} else { | ||
F = work[:len(x)] | ||
dFArray = work[len(x) : 2*len(x)] | ||
p.F(F, x) | ||
} | ||
|
||
infNormDF := 0.0 | ||
infNormF := 0.0 | ||
for j := range x { | ||
dF := math.Abs(work[j] - work[j+len(x)]) | ||
if dF > infNormDF { | ||
infNormDF = dF | ||
} | ||
|
||
if math.Abs(F[j]) > infNormF { | ||
infNormF = math.Abs(F[j]) | ||
} | ||
} | ||
|
||
if infNormDx+infNormF < settings.Tol { | ||
result.X = x | ||
result.Converged = true | ||
result.F = F | ||
return result | ||
} | ||
|
||
if infNormDF > settings.Tol { | ||
sign := math.Pow(-1.0, float64(i)) | ||
// Overwrite the part of the work array where F_k is stored with dF_k = F_{k+1} - F_k | ||
for j := range x { | ||
dFArray[j] = sign * (work[len(x)+j] - work[j]) | ||
} | ||
updateG(G, dFArray, work[2*len(x):]) | ||
} | ||
} | ||
|
||
result.X = x | ||
result.Converged = false | ||
result.F = work[:len(x)] | ||
return result | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,78 @@ | ||
package nonlin | ||
|
||
import ( | ||
"math" | ||
"testing" | ||
) | ||
|
||
func TestJFSJ(t *testing.T) { | ||
for i, test := range []struct { | ||
F func(out []float64, x []float64) | ||
Init []float64 | ||
Solution []float64 | ||
Tol float64 | ||
}{ | ||
{ | ||
F: func(out []float64, x []float64) { | ||
out[0] = math.Pow(x[0]-1.0, 2.0) * (x[0] - x[1]) | ||
out[1] = math.Pow(x[1]-2.0, 5.0) * math.Cos(2.0*x[0]/x[1]) | ||
}, | ||
Init: []float64{0.0, 3.0}, | ||
Solution: []float64{1.0, 2.0}, | ||
Tol: 1e-6, | ||
}, | ||
{ | ||
F: func(out []float64, x []float64) { | ||
out[0] = math.Pow(x[0]-1.0, 2.0) * (x[0] - x[1]) | ||
out[1] = math.Pow(x[1]-2.0, 5.0) * math.Cos(2.0*x[0]/x[1]) | ||
}, | ||
Init: []float64{0.5, 2.0}, | ||
Solution: []float64{1.0, 2.0}, | ||
Tol: 1e-6, | ||
}, | ||
{ | ||
F: func(out []float64, x []float64) { | ||
out[0] = 4.0*x[0] - 2.0*x[1] + x[0]*x[0] - 3.0 | ||
out[1] = -x[0] + 4*x[1] - x[2] + x[1]*x[1] - 3.0 | ||
out[2] = -2.0*x[1] + 4.0*x[2] + x[2]*x[2] - 3.0 | ||
}, | ||
Init: []float64{-1.5, 0.0, -1.5}, | ||
Solution: []float64{1.0, 1.0, 1.0}, | ||
Tol: 1e-6, | ||
}, | ||
{ | ||
F: func(out []float64, x []float64) { | ||
out[0] = 2.0/(1.0+x[0]*x[0]) + math.Sin(x[1]-1.0) - 1.0 | ||
out[1] = math.Sin(x[0]-1.0) + 2.0/(1.0+x[1]*x[1]) - 1.0 | ||
}, | ||
Init: []float64{0.7, 0.7}, | ||
Solution: []float64{1.0, 1.0}, | ||
Tol: 1e-6, | ||
}, | ||
{ | ||
F: func(out []float64, x []float64) { | ||
out[0] = math.Exp(x[0]) + x[1] - 1.0 | ||
out[1] = math.Exp(x[1]) + x[0] - 1.0 | ||
}, | ||
Init: []float64{-0.5, -0.5}, | ||
Solution: []float64{0.0, 0.0}, | ||
Tol: 1e-6, | ||
}, | ||
} { | ||
p := Problem{ | ||
F: test.F, | ||
} | ||
|
||
res := JFSJ(p, test.Init, nil) | ||
if !res.Converged { | ||
t.Errorf("Test #%d: Did not converge\n", i) | ||
} | ||
|
||
for j := range res.X { | ||
if math.Abs(res.X[j]-test.Solution[j]) > test.Tol { | ||
t.Errorf("Test #%d:\nExpected\n%v\nGot\n%v\n", i, test.Solution, res.X) | ||
break | ||
} | ||
} | ||
} | ||
} |
Oops, something went wrong.