Skip to content

datttrian/leetcode

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

LeetCode

Lint

Open in Google Colab

Open in GitHub Codespaces

Easy

217. Contains Duplicate

Given an integer array nums, return true if any value appears at least twice in the array, and return false if every element is distinct.

Example 1:

Input: nums = [1,2,3,1]
Output: true

Example 2:

Input: nums = [1,2,3,4]
Output: false

Example 3:

Input: nums = [1,1,1,3,3,4,3,2,4,2]
Output: true

Constraints:

  • 1 <= nums.length <= 105
  • -109<= nums[i] <= 109

Brute Force - O(n^2), O(1)

class Solution:
    def containsDuplicate(self, nums: list[int]) -> bool:

        # Loop through all numbers in `nums`
        n = len(nums)
        for current_index in range(n):

            # Loop through the remaining numbers
            for comparison_index in range(current_index + 1, n):

                # Return True if the numbers at the two indices are equal
                if nums[current_index] == nums[comparison_index]:
                    return True

        # Return False if no equality is found after completing the iteration
        return False


solution = Solution()
print(solution.containsDuplicate(nums=[1, 2, 3, 1]))
print(solution.containsDuplicate(nums=[1, 2, 3, 4]))
print(solution.containsDuplicate(nums=[1, 1, 1, 3, 3, 4, 3, 2, 4, 2]))
True
False
True

Sorting - O(n log n), O(1)

class Solution:
    def containsDuplicate(self, nums: list[int]) -> bool:

        # Sort the list `nums` in ascending order
        nums.sort()

        # Loop through all numbers in the sorted list from the second element
        for index in range(1, len(nums)):

            # Return True if the current number is equal to the previous number
            if nums[index] == nums[index - 1]:
                return True

        # Return False if no equality is found after completing the iteration
        return False


solution = Solution()
print(solution.containsDuplicate(nums=[1, 2, 3, 1]))
print(solution.containsDuplicate(nums=[1, 2, 3, 4]))
print(solution.containsDuplicate(nums=[1, 1, 1, 3, 3, 4, 3, 2, 4, 2]))
True
False
True

Arrays & Hashing - O(n), O(n)

class Solution:
    def containsDuplicate(self, nums: list[int]) -> bool:

        # Create an empty set to store unique numbers in `nums`
        unique_nums: set[int] = set()

        # Loop through all numbers in `nums`
        for num in nums:

            # Return True if the current number is already in the set
            if num in unique_nums:
                return True
            
            # Otherwise, add the number to the set
            unique_nums.add(num)

        # Return False if no duplicates are found after completing the iteration
        return False


solution = Solution()
print(solution.containsDuplicate(nums=[1, 2, 3, 1]))
print(solution.containsDuplicate(nums=[1, 2, 3, 4]))
print(solution.containsDuplicate(nums=[1, 1, 1, 3, 3, 4, 3, 2, 4, 2]))
True
False
True

242. Valid Anagram

Given two strings s and t, return true if t is an anagram of s, and false otherwise.

An Anagram is a word or phrase formed by rearranging the letters of a different word or phrase, typically using all the original letters exactly once.

Example 1:

Input: s = "anagram", t = "nagaram"
Output: true

Example 2:

Input: s = "rat", t = "car"
Output: false

Constraints:

  • 1 <= s.length, t.length <= 5 * 104
  • s and t consist of lowercase English letters.

Follow up: What if the inputs contain Unicode characters? How would you adapt your solution to such a case?

Brute Force - O(n^2), O(1)

class Solution:
    def isAnagram(self, s: str, t: str) -> bool:

        # Base case: If the lengths of `s` and `t` are different, they cannot be anagrams
        if len(s) != len(t):
            return False

        # Loop through all characters in `s`
        for char_s in s:

            # Create a flag to check if a matching character is found
            is_matched = False

            # Loop through all characters and their indices in `t`
            for index, char_t in enumerate(t):

                # If the character in `s` and the character in `t` are equal
                if char_t == char_s:

                    # Remove the character from `t`
                    t = t[:index] + t[index + 1 :]

                    # Set the flag to True and exit the loop
                    is_matched = True
                    break

            # Return False if no match is found for the character in `s`
            if not is_matched:
                return False

        # Return True after completing the iteration
        return True


solution = Solution()
print(solution.isAnagram(s="anagram", t="nagaram"))
print(solution.isAnagram(s="rat", t="car"))
True
False

Sorting - O(n log n), O(n)

class Solution:
    def isAnagram(self, s: str, t: str) -> bool:
        return sorted(s) == sorted(t)


solution = Solution()
print(solution.isAnagram(s="anagram", t="nagaram"))
print(solution.isAnagram(s="rat", t="car"))
True
False

Arrays & Hashing - O(n), O(1)

from typing import Counter


class Solution:
    def isAnagram(self, s: str, t: str) -> bool:
        return Counter(s) == Counter(t)


solution = Solution()
print(solution.isAnagram(s="anagram", t="nagaram"))
print(solution.isAnagram(s="rat", t="car"))
True
False

Using Character Count as Key - O(n), O(1)

class Solution:
    def isAnagram(self, s: str, t: str) -> bool:

        # Base case: If the lengths of `s` and `t` are different, they cannot be anagrams
        if len(s) != len(t):
            return False

        # Create a list to count the frequency of each English character in `s` and `t`
        counts = [0] * 26

        # Loop through all characters in `s` and `t`
        for index, char in enumerate(s):

            # Increment the counts for the character in `s`
            counts[ord(char) - ord("a")] += 1

            # Decrement the counts for the character in `t`
            counts[ord(t[index]) - ord("a")] -= 1

        # Return true if the counts are zero
        return all(count == 0 for count in counts)


solution = Solution()
print(solution.isAnagram(s="anagram", t="nagaram"))
print(solution.isAnagram(s="rat", t="car"))
True
False

Using Prime Numbers - O(n), O(1)

class Solution:
    def isAnagram(self, s: str, t: str) -> bool:

        # Map each lowercase English letter to a unique prime number
        prime_numbers = {
            "a": 2,
            "b": 3,
            "c": 5,
            "d": 7,
            "e": 11,
            "f": 13,
            "g": 17,
            "h": 19,
            "i": 23,
            "j": 29,
            "k": 31,
            "l": 37,
            "m": 41,
            "n": 43,
            "o": 47,
            "p": 53,
            "q": 59,
            "r": 61,
            "s": 67,
            "t": 71,
            "u": 73,
            "v": 79,
            "w": 83,
            "x": 89,
            "y": 97,
            "z": 101,
        }

        # Initialize the products of prime numbers corresponding to characters in `s` and `t`
        product_s = 1
        product_t = 1

        # Loop through all characters in `s`
        for char in s:

            # Multiply the product corresponding to `s` by the prime number corresponding to the character
            product_s *= prime_numbers[char]

        # Loop through all characters in `t`
        for char in t:

            # Multiply the product corresponding to `t` by the prime number corresponding to the character
            product_t *= prime_numbers[char]

        # Return True if the products are equal
        return product_s == product_t


solution = Solution()
print(solution.isAnagram(s="anagram", t="nagaram"))
print(solution.isAnagram(s="rat", t="car"))
True
False

1. Two Sum

Given an array of integers nums and an integer target, return indices of the two numbers such that they add up to target.

You may assume that each input would have exactly one solution, and you may not use the same element twice.

You can return the answer in any order.

Example 1:

Input: nums = [2,7,11,15], target = 9
Output: [0,1]
Explanation: Because nums[0] + nums[1] == 9, we return [0, 1].

Example 2:

Input: nums = [3,2,4], target = 6
Output: [1,2]

Example 3:

Input: nums = [3,3], target = 6
Output: [0,1]

Constraints:

  • 2 <= nums.length <= 104
  • -109<= nums[i] <= 109
  • -109<= target <= 109
  • Only one valid answer exists.

Follow-up: Can you come up with an algorithm that is less than O(n2) time complexity?

Brute Force - O(n^2), O(1)

class Solution:
    def twoSum(self, nums: list[int], target: int) -> list[int]:

        # Loop through all numbers in `nums`
        n = len(nums)
        for current_index in range(n):

            # Loop through the remaining numbers
            for comparison_index in range(current_index + 1, n):

                # Return True if the sum of the numbers at two indices equals `target`
                if nums[current_index] + nums[comparison_index] == target:
                    return [current_index, comparison_index]

        # Return an empty list if no equality is found after completing the iteration
        return []


solution = Solution()
print(solution.twoSum(nums=[2, 7, 11, 15], target=9))
print(solution.twoSum(nums=[3, 2, 4], target=6))
print(solution.twoSum(nums=[3, 3], target=6))
[0, 1]
[1, 2]
[0, 1]

Two Pointers - O(n log n), O(n)

class Solution:
    def twoSum(self, nums: list[int], target: int) -> list[int]:

        # Create a sorted list of tuples containing the original index and value of `nums`
        nums_sorted = sorted(enumerate(nums), key=lambda x: x[1])

        # Loop until two pointers at the start and at the end of the sorted list meet
        left, right = 0, len(nums) - 1
        while left < right:

            # Calculate the sum of the values at the current pointers
            current_sum = nums_sorted[left][1] + nums_sorted[right][1]

            # Return the original indices of the two numbers if the current sum is equal to `target`
            if current_sum == target:
                return [nums_sorted[left][0], nums_sorted[right][0]]

            # If the current sum is less than `target`, move the left pointer to the right
            if current_sum < target:
                left += 1

            # If the current sum is greater than `target`, move the right pointer to the left
            else:
                right -= 1

        # Return an empty list if no solution is found after completing the iteration
        return []


solution = Solution()
print(solution.twoSum(nums=[2, 7, 11, 15], target=9))
print(solution.twoSum(nums=[3, 2, 4], target=6))
print(solution.twoSum(nums=[3, 3], target=6))
[0, 1]
[1, 2]
[0, 1]

Arrays & Hashing - O(n), O(n)

class Solution:
    def twoSum(self, nums: list[int], target: int) -> list[int]:

        # Create a dictionary to store the numbers and their indices in `nums`
        nums_index: dict[int, int] = {}

        # Loop through all numbers and their indices in `nums`
        for index, num in enumerate(nums):

            # Calculate the complement of the current number and `target`
            complement = target - num

            # Return the indices of the two numbers if the complement is in the dictionary
            if complement in nums_index:
                return [nums_index[complement], index]

            # Otherwise, add the current number and its index to the dictionary
            nums_index[num] = index

        # Return an empty list if no equality is found after completing the iteration
        return []


solution = Solution()
print(solution.twoSum(nums=[2, 7, 11, 15], target=9))
print(solution.twoSum(nums=[3, 2, 4], target=6))
print(solution.twoSum(nums=[3, 3], target=6))
[0, 1]
[1, 2]
[0, 1]

125. Valid Palindrome

A phrase is a palindrome if, after converting all uppercase letters into lowercase letters and removing all non-alphanumeric characters, it reads the same forward and backward. Alphanumeric characters include letters and numbers.

Given a string s, return true if it is a palindrome, or false otherwise.

Example 1:

Input: s = "A man, a plan, a canal: Panama"
Output: true
Explanation: "amanaplanacanalpanama" is a palindrome.

Example 2:

Input: s = "race a car"
Output: false
Explanation: "raceacar" is not a palindrome.

Example 3:

Input: s = " "
Output: true
Explanation: s is an empty string "" after removing non-alphanumeric characters.
Since an empty string reads the same forward and backward, it is a palindrome.

Constraints:

  • 1 <= s.length <= 2 * 105
  • s consists only of printable ASCII characters.

Brute Force - O(n), O(n)

class Solution:
    def isPalindrome(self, s: str) -> bool:

        # Normalize `s`
        normalized_s = "".join(

            # Convert all characters to lowercase
            char.lower() for char in s

            # Join characters that are alphanumeric
            if char.isalnum()
        )

        # Return True if the normalized string is equal to its reverse
        return normalized_s == normalized_s[::-1]


solution = Solution()
print(solution.isPalindrome(s="A man, a plan, a canal: Panama"))
print(solution.isPalindrome(s="race a car"))
print(solution.isPalindrome(s=" "))
True
False
True

Two Pointers - O(n), O(1)

class Solution:
    def isPalindrome(self, s: str) -> bool:

        def alpha_num(c: str) -> bool:
            """Check if a given character is alphanumeric."""
            return (
                ord("A") <= ord(c) <= ord("Z")
                or ord("a") <= ord(c) <= ord("z")
                or ord("0") <= ord(c) <= ord("9")
            )

        # Loop through `s` using two pointers from the left and from the right
        left, right = 0, len(s) - 1
        while left < right:

            # Move the pointers closer to the center until an alphanumeric character is found
            while left < right and not alpha_num(s[left]):
                left += 1
            while left < right and not alpha_num(s[right]):
                right -= 1

            # Return False if the characters at the left and right pointers are not equal
            if s[left].lower() != s[right].lower():
                return False

            # Move the pointers closer to the center
            left += 1
            right -= 1

        # Return True after completing the iteration
        return True


solution = Solution()
print(solution.isPalindrome(s="A man, a plan, a canal: Panama"))
print(solution.isPalindrome(s="race a car"))
print(solution.isPalindrome(s=" "))
True
False
True

170. Two Sum III - Data structure design

Design a data structure that accepts a stream of integers and checks if it has a pair of integers that sum up to a particular value.

Implement the TwoSum class:

  • TwoSum() Initializes the TwoSum object, with an empty array initially.
  • void add(int number) Adds number to the data structure.
  • boolean find(int value) Returns true if there exists any pair of numbers whose sum is equal to value, otherwise, it returns false.

Example 1:

Input
["TwoSum", "add", "add", "add", "find", "find"]
[[], [1], [3], [5], [4], [7]]
Output
[null, null, null, null, true, false]

Explanation
TwoSum twoSum = new TwoSum();
twoSum.add(1);   // [] --> [1]
twoSum.add(3);   // [1] --> [1,3]
twoSum.add(5);   // [1,3] --> [1,3,5]
twoSum.find(4);  // 1 + 3 = 4, return true
twoSum.find(7);  // No two integers sum up to 7, return false

Constraints:

  • -10^5 <= number <= 10^5
  • -2^31 <= value <= 2^31 - 1
  • At most 5 * 10^4 calls will be made to add and find.

121. Best Time to Buy and Sell Stock

You are given an array prices where prices[i] is the price of a given stock on the ith day.

You want to maximize your profit by choosing a single day to buy one stock and choosing a different day in the future to sell that stock.

Return the maximum profit you can achieve from this transaction. If you cannot achieve any profit, return 0.

Example 1:

Input: prices = [7,1,5,3,6,4]
Output: 5
Explanation: Buy on day 2 (price = 1) and sell on day 5 (price = 6), profit = 6-1 = 5.
Note that buying on day 2 and selling on day 1 is not allowed because you must buy before you sell.

Example 2:

Input: prices = [7,6,4,3,1]
Output: 0
Explanation: In this case, no transactions are done and the max profit = 0.

Constraints:

  • 1 <= prices.length <= 105
  • 0 <= prices[i] <= 104

Brute Force - O(n^2), O(1)

class Solution:
    def maxProfit(self, prices: list[int]) -> int:

        # Initialize the maximum profit to zero
        max_profit = 0

        # Loop through all days of `prices` as the buying day
        num_days = len(prices)
        for buy_day in range(num_days):

            # Loop through all subsequent days as the selling day
            for sell_day in range(buy_day + 1, num_days):

                # Calculate the potential profit for the pair of days
                potential_profit = prices[sell_day] - prices[buy_day]

                # Update the maximum profit if the potential profit is higher
                max_profit = max(potential_profit, max_profit)

        # Return the maximum profit
        return max_profit


solution = Solution()
print(solution.maxProfit(prices=[7, 1, 5, 3, 6, 4]))
print(solution.maxProfit(prices=[7, 6, 4, 3, 1]))
5
0

Sliding Window - O(n), O(1)

class Solution:
    def maxProfit(self, prices: list[int]) -> int:

        # Initialize the minimum price to the first price in `prices`
        min_price = prices[0]
        
        # Initialize the maximum profit to zero
        max_profit = 0

        # Loop through all numbers in `prices` from the second day
        for price in prices[1:]:

            # Update the minimum numbers if the current number is lower
            min_price = min(min_price, price)

            # Calculate the potential profit
            profit = price - min_price

            # Update the maximum profit if the potential profit is higher
            max_profit = max(max_profit, profit)

        # Return the maximum profit
        return max_profit


solution = Solution()
print(solution.maxProfit(prices=[7, 1, 5, 3, 6, 4]))
print(solution.maxProfit(prices=[7, 6, 4, 3, 1]))
5
0

20. Valid Parentheses

Given a string s containing just the characters '(', ')', '{', '}', '[' and ']', determine if the input string is valid.

An input string is valid if:

  1. Open brackets must be closed by the same type of brackets.
  2. Open brackets must be closed in the correct order.
  3. Every close bracket has a corresponding open bracket of the same type.

Example 1:

Input: s = "()"
Output: true

Example 2:

Input: s = "()[]{}"
Output: true

Example 3:

Input: s = "(]"
Output: false

Constraints:

  • 1 <= s.length <= 104
  • s consists of parentheses only '()[]{}'.

Brute Force - O(n^2), O(n)

class Solution:
    def isValid(self, s: str) -> bool:

        # Define a dictionary of matching parentheses pairs
        matching_parentheses = {"(": ")", "{": "}", "[": "]"}

        # Loop through all characters in `s` until no more pairs are found
        while any(open_paren + close_paren in s for open_paren, close_paren in matching_parentheses.items()):

            # Replace each pair of matching parentheses with an empty string
            for open_paren, close_paren in matching_parentheses.items():
                s = s.replace(open_paren + close_paren, "")

        # Return True if the string is empty after completing the iteration
        return not s


solution = Solution()
print(solution.isValid(s="()"))
print(solution.isValid(s="()[]{}"))
print(solution.isValid(s="(]"))
True
True
False

Recursion - O(n^2), O(n)

class Solution:
    def isValid(self, s: str) -> bool:

        # Base case: If `s` is empty, it is considered valid
        if not s:
            return True

        # Define a dictionary of matching parentheses pairs
        matching_parentheses = {"(": ")", "{": "}", "[": "]"}

        # Loop through `s` up to the second-to-last character
        index = 0
        length = len(s)
        while index < length - 1:

            # Check each pair of characters for a matching set of parentheses
            for open_paren, close_paren in matching_parentheses.items():

                # If a matching pair is found
                if s[index] == open_paren and s[index + 1] == close_paren:

                    # Create a new string without the matched parentheses
                    new_string = s[:index] + s[index + 2:]

                    # Recursively check if the new string is valid
                    return self.isValid(new_string)

            # Move to the next character in the string
            index += 1

        # Return False if no such valid pairs are found after completing the iteration
        return False


solution = Solution()
print(solution.isValid(s="()"))
print(solution.isValid(s="()[]{}"))
print(solution.isValid(s="(]"))
True
True
False

Stack - O(n), O(n)

class Solution:
    def isValid(self, s: str) -> bool:

        # Initialize an empty stack to keep track of opening parentheses
        stack: list[str] = []

        # Define a dictionary of matching parentheses pairs
        matching_parentheses = {")": "(", "}": "{", "]": "["}

        # Loop through all characters in `s`
        for char in s:

            # Check if the current character is a closing parenthesis
            if char in matching_parentheses:

                # Return False if the stack is empty or the top of the stack does not match the opening parenthesis
                if not stack or stack.pop() != matching_parentheses[char]:
                    return False
            else:

                # Push the current character onto the stack if it is an opening parenthesis
                stack.append(char)

        # Return True if the stack is empty after completing the iteration
        return not stack


solution = Solution()
print(solution.isValid(s="()"))
print(solution.isValid(s="()[]{}"))
print(solution.isValid(s="(]"))
True
True
False

704. Binary Search

Given an array of integers nums which is sorted in ascending order, and an integer target, write a function to search target in nums. If target exists, then return its index. Otherwise, return -1.

You must write an algorithm with O(log n) runtime complexity.

Example 1:

Input: nums = [-1,0,3,5,9,12], target = 9
Output: 4
Explanation: 9 exists in nums and its index is 4

Example 2:

Input: nums = [-1,0,3,5,9,12], target = 2
Output: -1
Explanation: 2 does not exist in nums so return -1

Constraints:

  • 1 <= nums.length <= 104
  • -104< nums[i], target < 104
  • All the integers in nums are unique.
  • nums is sorted in ascending order.

Two Pointers - O(log n), O(1)

class Solution:
    def search(self, nums: list[int], target: int) -> int:

        # Loop until two pointers at the start and at the end of `nums` meet
        left, right = 0, len(nums) - 1
        while left <= right:

            # Calculate the middle index between two pointers
            mid = (left + right) // 2

            # Return the index if the middle element equal `target`
            if nums[mid] == target:
                return mid

            # If the middle element is less than `target` adjust the left pointer to search the right half
            if nums[mid] < target:
                left, right = mid + 1, right

            # Otherwise, adjust the right pointer to search the left half
            else:
                left, right = left, mid - 1

        # Return -1 if `target` is not found in the list after completing the iteration
        return -1


solution = Solution()
print(solution.search([-1, 0, 3, 5, 9, 12], target=9))
print(solution.search([-1, 0, 3, 5, 9, 12], target=2))
4
-1

Recursion - O(log n), O(1)

class Solution:
    def search(self, nums: list[int], target: int) -> int:
        def binary_search(left: int, right: int) -> int:
            """Recursively performs a binary search."""

            # Base case: if the left index exceeds the right index, `target` is not found
            if left > right:
                return -1

            # Calculate the middle index of `nums`
            mid = (left + right) // 2

            # Return the index if the element at the middle index equal `target`
            if nums[mid] == target:
                return mid

            return (
                # Recursively search the right half if `target` is greater than the middle element
                binary_search(mid + 1, right)
                # Otherwise, search the left half
                if nums[mid] < target
                else binary_search(left, mid - 1)
            )

        # Start the binary search on `nums`
        return binary_search(0, len(nums) - 1)


solution = Solution()
print(solution.search([-1, 0, 3, 5, 9, 12], target=9))
print(solution.search([-1, 0, 3, 5, 9, 12], target=2))
4
-1

Exponential Search - O(log n), O(1)

class Solution:
    def search(self, nums: list[int], target: int) -> int:

        # Return 0 if the first element in `nums` matches `target`
        if nums[0] == target:
            return 0

        # Otherwise, initialize the search bound to 1
        bound = 1

        # Increase the bound exponentially until it surpasses `target` or reach the end of `nums`
        n = len(nums)
        while bound < n and nums[bound] < target:
            bound *= 2

        # Loop until two pointers at half of the bound and at the minimum of the bound or the last index meet
        left = bound // 2
        right = min(bound, n - 1)
        while left <= right:

            # Calculate the middle index between two pointers
            mid = (left + right) // 2

            # Return the index if the middle element equal `target`
            if nums[mid] == target:
                return mid

            # If the middle element is less than `target`, adjust the left pointer to search the right half
            if nums[mid] < target:
                left, right = mid + 1, right

            # Otherwise, adjust the right pointer to search the left half
            else:
                left, right = left, mid - 1

        # Return -1 if `target` is not found in the list after completing the iteration
        return -1


solution = Solution()
print(solution.search([-1, 0, 3, 5, 9, 12], target=9))
print(solution.search([-1, 0, 3, 5, 9, 12], target=2))
4
-1

206. Reverse Linked List

Given the head of a singly linked list, reverse the list, and return the reversed list.

Example 1:

Input: head = [1,2,3,4,5]
Output: [5,4,3,2,1]

Example 2:

Input: head = [1,2]
Output: [2,1]

Example 3:

Input: head = []
Output: []

Constraints:

  • The number of nodes in the list is the range [0, 5000].
  • -5000 <= Node.val <= 5000

Follow up: A linked list can be reversed either iteratively or recursively. Could you implement both?

from typing import Optional


# Definition for singly-linked list.
class ListNode:
    def __init__(
        self,
        val: int = 0,
        nextNode: "Optional[ListNode]" = None,
    ) -> None:
        self.val: int = val
        self.next: Optional[ListNode] = nextNode


# Helper function to convert list to linked list
def list_to_linked_list(lst: list[int]) -> Optional[ListNode]:
    dummy = ListNode()
    current = dummy
    for value in lst:
        current.next = ListNode(value)
        current = current.next
    return dummy.next


# Helper function to convert linked list to list
def linked_list_to_list(node: Optional[ListNode]) -> list[int]:
    result: list[int] = []
    while node:
        result.append(node.val)
        node = node.next
    return result

Iterative - O(n), O(1)

class Solution:
    def reverseList(self, head: Optional[ListNode]) -> Optional[ListNode]:

        # Initialize a variable to keep track of the previous node
        previous_node = None
        
        # Loop through all nodes in `head`
        current_node = head
        while current_node:

            # Store the next node of the current node in a temporary variable
            temp = current_node.next

            # Point the next node of the current node to the previous node
            current_node.next = previous_node

            # Move the previous node to the current node
            previous_node = current_node

            # Move the current node to the next node stored in the temporary variable
            current_node = temp

        # Return the previous node that points to the new head after completing the iteration
        return previous_node


solution = Solution()
print(linked_list_to_list(solution.reverseList(list_to_linked_list([1, 2, 3, 4, 5]))))
print(linked_list_to_list(solution.reverseList(list_to_linked_list([1, 2]))))
print(linked_list_to_list(solution.reverseList(list_to_linked_list([]))))
[5, 4, 3, 2, 1]
[2, 1]
[]

Recursive - O(n), O(n)

class Solution:
    def reverseList(self, head: Optional[ListNode]) -> Optional[ListNode]:

        # Base case: if `head` is empty or has only one node, return the list as is
        if not head or not head.next:
            return head

        # Recursively reverse the list from the second node
        reversed_head = self.reverseList(head.next)

        # After completing the recursion, point the next node of the end of the reversed list to the current node
        head.next.next = head

        # Point the next node of the current node to None
        head.next = None

        # Return the head of the reversed list
        return reversed_head


solution = Solution()
print(linked_list_to_list(solution.reverseList(list_to_linked_list([1, 2, 3, 4, 5]))))
print(linked_list_to_list(solution.reverseList(list_to_linked_list([1, 2]))))
print(linked_list_to_list(solution.reverseList(list_to_linked_list([]))))
[5, 4, 3, 2, 1]
[2, 1]
[]

21. Merge Two Sorted Lists

You are given the heads of two sorted linked lists list1 and list2.

Merge the two lists into one sorted list. The list should be made by splicing together the nodes of the first two lists.

Return the head of the merged linked list.

Example 1:

Input: list1 = [1,2,4], list2 = [1,3,4]
Output: [1,1,2,3,4,4]

Example 2:

Input: list1 = [], list2 = []
Output: []

Example 3:

Input: list1 = [], list2 = [0]
Output: [0]

Constraints:

  • The number of nodes in both lists is in the range [0, 50].
  • -100 <= Node.val <= 100
  • Both list1 and list2 are sorted in non-decreasing order.

Iterative - O(n), O(1)

class Solution:
    def mergeTwoLists(
        self, list1: Optional[ListNode], list2: Optional[ListNode]
    ) -> Optional[ListNode]:
        dummy = ListNode()
        current = dummy

        while list1 and list2:
            if list1.val < list2.val:
                current.next = list1
                list1 = list1.next
            else:
                current.next = list2
                list2 = list2.next
            current = current.next

        if list1:
            current.next = list1
        else:
            current.next = list2

        return dummy.next


solution = Solution()
print(linked_list_to_list(solution.mergeTwoLists(list_to_linked_list([1, 2, 4]), list_to_linked_list([1, 3, 4]))))
print(linked_list_to_list(solution.mergeTwoLists(list_to_linked_list([]), list_to_linked_list([]))))
print(linked_list_to_list(solution.mergeTwoLists(list_to_linked_list([]), list_to_linked_list([0]))))
[1, 1, 2, 3, 4, 4]
[]
[0]

Recursive - O(n), O(n)

class Solution:
    def mergeTwoLists(
        self, list1: Optional[ListNode], list2: Optional[ListNode]
    ) -> Optional[ListNode]:
        if not list1:
            return list2
        if not list2:
            return list1

        if list1.val < list2.val:
            list1.next = self.mergeTwoLists(list1.next, list2)
            return list1
        list2.next = self.mergeTwoLists(list1, list2.next)
        return list2


solution = Solution()
print(linked_list_to_list(solution.mergeTwoLists(list_to_linked_list([1, 2, 4]), list_to_linked_list([1, 3, 4]))))
print(linked_list_to_list(solution.mergeTwoLists(list_to_linked_list([]), list_to_linked_list([]))))
print(linked_list_to_list(solution.mergeTwoLists(list_to_linked_list([]), list_to_linked_list([0]))))
[1, 1, 2, 3, 4, 4]
[]
[0]

141. Linked List Cycle

Given head, the head of a linked list, determine if the linked list has a cycle in it.

There is a cycle in a linked list if there is some node in the list that can be reached again by continuously following the next pointer. Internally, pos is used to denote the index of the node that tail's next pointer is connected to. Note that pos is not passed as a parameter.

Return true if there is a cycle in the linked list. Otherwise, return false.

Example 1:

Input: head = [3,2,0,-4], pos = 1
Output: true
Explanation: There is a cycle in the linked list, where the tail connects to the 1st node (0-indexed).

Example 2:

Input: head = [1,2], pos = 0
Output: true
Explanation: There is a cycle in the linked list, where the tail connects to the 0th node.

Example 3:

Input: head = [1], pos = -1
Output: false
Explanation: There is no cycle in the linked list.
def list_to_linked_list_cycle(lst: list[int], pos: int) -> Optional[ListNode]:
    nodes = [ListNode(val) for val in lst]

    for i in range(1, len(lst)):
        nodes[i - 1].next = nodes[i]

    if pos != -1:
        nodes[-1].next = nodes[pos]

    return nodes[0]

Arrays & Hashing - O(n), O(n)

class Solution:
    def hasCycle(self, head: Optional[ListNode]) -> bool:
        visited_nodes = {}
        current_node = head

        while current_node:
            if current_node in visited_nodes:
                return True
            visited_nodes[current_node] = True
            current_node = current_node.next

        return False


solution = Solution()
print(solution.hasCycle(list_to_linked_list_cycle([3, 2, 0, -4], 1)))
print(solution.hasCycle(list_to_linked_list_cycle([1, 2], 0)))
print(solution.hasCycle(list_to_linked_list_cycle([1], -1)))
True
True
False

Two Pointers - O(n), O(1)

class Solution:
    def hasCycle(self, head: Optional[ListNode]) -> bool:
        slow = head
        fast = head

        while slow and fast and fast.next:
            slow = slow.next
            fast = fast.next.next
            if slow == fast:
                return True

        return False


solution = Solution()
print(solution.hasCycle(list_to_linked_list_cycle([3, 2, 0, -4], 1)))
print(solution.hasCycle(list_to_linked_list_cycle([1, 2], 0)))
print(solution.hasCycle(list_to_linked_list_cycle([1], -1)))
True
True
False

226. Invert Binary Tree

Given the root of a binary tree, invert the tree, and return its root.

Example 1:

Input: root = [4,2,7,1,3,6,9]
Output: [4,7,2,9,6,3,1]

Example 2:

Input: root = [2,1,3]
Output: [2,3,1]

Example 3:

Input: root = []
Output: []

Constraints:

  • The number of nodes in the tree is in the range [0, 100].
  • -100 <= Node.val <= 100
from collections import deque
from typing import Optional


class TreeNode:
    def __init__(
        self,
        val: Optional[int] = 0,
        left: Optional["TreeNode"] = None,
        right: Optional["TreeNode"] = None,
    ) -> None:
        self.val = val
        self.left = left
        self.right = right


def list_to_tree(values: list[Optional[int]]) -> Optional[TreeNode]:
    if not values:
        return None
    root = TreeNode(values[0])
    queue = [root]
    i = 1
    while i < len(values):
        current = queue.pop(0)
        if values[i] is not None:
            current.left = TreeNode(values[i])
            queue.append(current.left)
        i += 1
        if i < len(values) and values[i] is not None:
            current.right = TreeNode(values[i])
            queue.append(current.right)
        i += 1
    return root


def tree_to_list(root: Optional[TreeNode]) -> list[Optional[int]]:

    result: list[Optional[int]] = []
    queue: deque[Optional[TreeNode]] = deque([root])

    while queue:
        current = queue.popleft()
        if current:
            result.append(current.val)
            queue.append(current.left)
            queue.append(current.right)
        else:
            result.append(None)

    while result and result[-1] is None:
        result.pop()

    return result

Iterative DFS - O(n), O(n)

class Solution:
    def invertTree(self, root: Optional[TreeNode]) -> Optional[TreeNode]:
        if not root:
            return None

        stack = [root]

        while stack:
            current = stack.pop()
            current.left, current.right = current.right, current.left

            if current.left:
                stack.append(current.left)
            if current.right:
                stack.append(current.right)

        return root


solution = Solution()
print(tree_to_list(solution.invertTree(list_to_tree([4, 2, 7, 1, 3, 6, 9]))))
print(tree_to_list(solution.invertTree(list_to_tree([2, 1, 3]))))
print(tree_to_list(solution.invertTree(list_to_tree([]))))
[4, 7, 2, 9, 6, 3, 1]
[2, 3, 1]
[]

Iterative BFS - O(n), O(n)

class Solution:
    def invertTree(self, root: Optional[TreeNode]) -> Optional[TreeNode]:
        if not root:
            return None

        queue = deque([root])

        while queue:
            current = queue.popleft()
            current.left, current.right = current.right, current.left

            if current.left:
                queue.append(current.left)
            if current.right:
                queue.append(current.right)

        return root


solution = Solution()
print(tree_to_list(solution.invertTree(list_to_tree([4, 2, 7, 1, 3, 6, 9]))))
print(tree_to_list(solution.invertTree(list_to_tree([2, 1, 3]))))
print(tree_to_list(solution.invertTree(list_to_tree([]))))
[4, 7, 2, 9, 6, 3, 1]
[2, 3, 1]
[]

Recursive DFS - O(n), O(n)

class Solution:
    def invertTree(self, root: Optional[TreeNode]) -> Optional[TreeNode]:
        if not root:
            return None

        root.left, root.right = root.right, root.left
        self.invertTree(root.left)
        self.invertTree(root.right)

        return root


solution = Solution()
print(tree_to_list(solution.invertTree(list_to_tree([4, 2, 7, 1, 3, 6, 9]))))
print(tree_to_list(solution.invertTree(list_to_tree([2, 1, 3]))))
print(tree_to_list(solution.invertTree(list_to_tree([]))))
[4, 7, 2, 9, 6, 3, 1]
[2, 3, 1]
[]

104. Maximum Depth of Binary Tree

Given the root of a binary tree, return its maximum depth.

A binary tree's maximum depth is the number of nodes along the longest path from the root node down to the farthest leaf node.

Example 1:

Input: root = [3,9,20,null,null,15,7]
Output: 3

Example 2:

Input: root = [1,null,2]
Output: 2

Constraints:

  • The number of nodes in the tree is in the range [0, 104].
  • -100 <= Node.val <= 100

Iterative DFS - O(n), O(n)

class Solution:
    def maxDepth(self, root: Optional[TreeNode]) -> int:
        stack: list[tuple[Optional[TreeNode], int]] = [(root, 1)]
        max_depth = 0

        while stack:
            node, depth = stack.pop()
            if node:
                max_depth = max(max_depth, depth)
                stack.append((node.left, depth + 1))
                stack.append((node.right, depth + 1))

        return max_depth


solution = Solution()
print(solution.maxDepth(list_to_tree([3, 9, 20, None, None, 15, 7])))
print(solution.maxDepth(list_to_tree([1, None, 2])))
3
2

Iterative BFS - O(n), O(n)

class Solution:
    def maxDepth(self, root: Optional[TreeNode]) -> int:
        queue: deque[tuple[Optional[TreeNode], int]] = deque([(root, 1)])
        max_depth = 0

        while queue:
            node, depth = queue.popleft()
            if node:
                max_depth = max(max_depth, depth)
                queue.append((node.left, depth + 1))
                queue.append((node.right, depth + 1))

        return max_depth


solution = Solution()
print(solution.maxDepth(list_to_tree([3, 9, 20, None, None, 15, 7])))
print(solution.maxDepth(list_to_tree([1, None, 2])))
3
2

Recursive DFS - O(n), O(n)

class Solution:
    def maxDepth(self, root: Optional[TreeNode]) -> int:
        return (
            1 + max(self.maxDepth(root.left), self.maxDepth(root.right)) if root else 0
        )


solution = Solution()
print(solution.maxDepth(list_to_tree([3, 9, 20, None, None, 15, 7])))
print(solution.maxDepth(list_to_tree([1, None, 2])))
3
2

100. Same Tree

Given the roots of two binary trees p and q, write a function to check if they are the same or not.

Two binary trees are considered the same if they are structurally identical, and the nodes have the same value.

Example 1:

Input: p = [1,2,3], q = [1,2,3]
Output: true

Example 2:

Input: p = [1,2], q = [1,null,2]
Output: false

Example 3:

Input: p = [1,2,1], q = [1,1,2]
Output: false

Constraints:

  • The number of nodes in both trees is in the range [0, 100].
  • -104<= Node.val <= 104

Iterative DFS - O(n), O(n)

class Solution:
    def isSameTree(self, p: Optional[TreeNode], q: Optional[TreeNode]) -> bool:
        stack = [(p, q)]

        while stack:
            node1, node2 = stack.pop()

            if not node1 and not node2:
                continue
            if not node1 or not node2 or node1.val != node2.val:
                return False

            stack.append((node1.right, node2.right))
            stack.append((node1.left, node2.left))

        return True


solution = Solution()
print(solution.isSameTree(list_to_tree([1, 2, 3]), list_to_tree([1, 2, 3])))
print(solution.isSameTree(list_to_tree([1, 2]), list_to_tree([1, None, 2])))
print(solution.isSameTree(list_to_tree([1, 2, 1]), list_to_tree([1, 1, 2])))
True
False
False

Iterative BFS - O(n), O(n)

class Solution:
    def isSameTree(self, p: Optional[TreeNode], q: Optional[TreeNode]) -> bool:
        queue = deque([(p, q)])

        while queue:
            node1, node2 = queue.popleft()

            if not node1 and not node2:
                continue
            if not node1 or not node2 or node1.val != node2.val:
                return False

            queue.append((node1.right, node2.right))
            queue.append((node1.left, node2.left))

        return True


solution = Solution()
print(solution.isSameTree(list_to_tree([1, 2, 3]), list_to_tree([1, 2, 3])))
print(solution.isSameTree(list_to_tree([1, 2]), list_to_tree([1, None, 2])))
print(solution.isSameTree(list_to_tree([1, 2, 1]), list_to_tree([1, 1, 2])))
True
False
False

Recursive DFS - O(n), O(n)

class Solution:
    def isSameTree(self, p: Optional[TreeNode], q: Optional[TreeNode]) -> bool:
        return (
            p == q
            if not p or not q
            else (
                p.val == q.val
                and self.isSameTree(p.left, q.left)
                and self.isSameTree(p.right, q.right)
            )
        )


solution = Solution()
print(solution.isSameTree(list_to_tree([1, 2, 3]), list_to_tree([1, 2, 3])))
print(solution.isSameTree(list_to_tree([1, 2]), list_to_tree([1, None, 2])))
print(solution.isSameTree(list_to_tree([1, 2, 1]), list_to_tree([1, 1, 2])))
True
False
False

572. Subtree of Another Tree

Given the roots of two binary trees root and subRoot, return true if there is a subtree of root with the same structure and node values ofsubRoot and false otherwise.

A subtree of a binary tree tree is a tree that consists of a node in tree and all of this node's descendants. The tree tree could also be considered as a subtree of itself.

Example 1:

Input: root = [3,4,5,1,2], subRoot = [4,1,2]
Output: true

Example 2:

Input: root = [3,4,5,1,2,null,null,null,null,0], subRoot = [4,1,2]
Output: false

Constraints:

  • The number of nodes in the root tree is in the range [1, 2000].
  • The number of nodes in the subRoot tree is in the range [1, 1000].
  • -104<= root.val <= 104
  • -104<= subRoot.val <= 104

Recursive DFS - O(n), O(n)

class Solution:
    def isSubtree(self, root: Optional[TreeNode], subRoot: Optional[TreeNode]) -> bool:
        return (
            False
            if not root
            else self.isSameTree(root, subRoot)
            or self.isSubtree(root.left, subRoot)
            or self.isSubtree(root.right, subRoot)
        )

    def isSameTree(self, p: Optional[TreeNode], q: Optional[TreeNode]) -> bool:
        return (
            p == q
            if not p or not q
            else (
                p.val == q.val
                and self.isSameTree(p.left, q.left)
                and self.isSameTree(p.right, q.right)
            )
        )


solution = Solution()
print(solution.isSubtree(list_to_tree([3, 4, 5, 1, 2]), list_to_tree([4, 1, 2])))
print(solution.isSubtree(list_to_tree([3, 4, 5, 1, 2, None, None, None, None, 0]), list_to_tree([4, 1, 2])))
True
False

543. Diameter of Binary Tree

Given the root of a binary tree, return the length of the diameter of the tree.

The diameter of a binary tree is the length of the longest path between any two nodes in a tree. This path may or may not pass through the root.

The length of a path between two nodes is represented by the number of edges between them.

Example 1:

Input: root = [1,2,3,4,5]
Output: 3
Explanation: 3 is the length of the path [4,2,1,3] or [5,2,1,3].

Example 2:

Input: root = [1,2]
Output: 1

Constraints:

  • The number of nodes in the tree is in the range [1, 104].
  • -100 <= Node.val <= 100

Iterative DFS - O(n), O(n)

class Solution:
    def diameterOfBinaryTree(self, root: Optional[TreeNode]) -> int:
        stack: list[tuple[Optional[TreeNode], bool]] = [(root, False)]
        depth: dict[Optional[TreeNode], int] = {}
        diameter = 0

        while stack:
            node, visited = stack.pop()
            if node:
                if visited:
                    left_depth = depth.get(node.left, 0)
                    right_depth = depth.get(node.right, 0)
                    depth[node] = max(left_depth, right_depth) + 1
                    diameter = max(diameter, left_depth + right_depth)
                else:
                    stack.append((node, True))
                    stack.append((node.left, False))
                    stack.append((node.right, False))

        return diameter


solution = Solution()
print(solution.diameterOfBinaryTree(list_to_tree([1, 2, 3, 4, 5])))
print(solution.diameterOfBinaryTree(list_to_tree([1, 2])))
3
1

Recursive DFS - O(n), O(n)

class Solution:
    def diameterOfBinaryTree(self, root: Optional[TreeNode]) -> int:
        diameter = [0]

        def depth(node: Optional["TreeNode"]) -> int:
            if not node:
                return 0

            left_depth = depth(node.left)
            right_depth = depth(node.right)
            diameter[0] = max(diameter[0], left_depth + right_depth)

            return max(left_depth, right_depth) + 1

        depth(root)
        return diameter[0]


solution = Solution()
print(solution.diameterOfBinaryTree(list_to_tree([1, 2, 3, 4, 5])))
print(solution.diameterOfBinaryTree(list_to_tree([1, 2])))
3
1

110. Balanced Binary Tree

Given a binary tree, determine if it is height-balanced.

A height-balanced binary tree is a binary tree in which the depth of the two subtrees of every node never differs by more than one.

Example 1:

Input: root = [3,9,20,null,null,15,7]
Output: true

Example 2:

Input: root = [1,2,2,3,3,null,null,4,4]
Output: false

Example 3:

Input: root = []
Output: true

Constraints:

  • The number of nodes in the tree is in the range [0, 5000].
  • -104<= Node.val <= 104

Recursive DFS - O(n), O(h)

class Solution:
    def isBalanced(self, root: Optional[TreeNode]) -> bool:
        def dfs(node: Optional[TreeNode]) -> int:
            if not node:
                return 0
            left_height, right_height = dfs(node.left), dfs(node.right)
            if (
                left_height == -1
                or right_height == -1
                or abs(left_height - right_height) > 1
            ):
                return -1
            return max(left_height, right_height) + 1

        return dfs(root) != -1


solution = Solution()
print(solution.isBalanced(list_to_tree([3, 9, 20, None, None, 15, 7])))
print(solution.isBalanced(list_to_tree([1, 2, 2, 3, 3, None, None, 4, 4])))
print(solution.isBalanced(list_to_tree([])))
True
False
True

703. Kth Largest Element in a Stream

Design a class to find the kth largest element in a stream. Note that it is the kth largest element in the sorted order, not the kth distinct element.

Implement KthLargest class:

  • KthLargest(int k, int[] nums) Initializes the object with the integer k and the stream of integers nums.
  • int add(int val) Appends the integer val to the stream and returns the element representing the kth largest element in the stream.

Example 1:

Input
["KthLargest", "add", "add", "add", "add", "add"]
[[3, [4, 5, 8, 2]], [3], [5], [10], [9], [4]]
Output
[null, 4, 5, 5, 8, 8]

Explanation
KthLargest kthLargest = new KthLargest(3, [4, 5, 8, 2]);
kthLargest.add(3);   // return 4
kthLargest.add(5);   // return 5
kthLargest.add(10);  // return 5
kthLargest.add(9);   // return 8
kthLargest.add(4);   // return 8

Constraints:

  • 1 <= k <= 104
  • 0 <= nums.length <= 104
  • -104<= nums[i] <= 104
  • -104<= val <= 104
  • At most 104 calls will be made to add.
  • It is guaranteed that there will be at least k elements in the array when you search for the kth element.

Sorting - O(n log n), O(n); O(n log n), O(n)

class KthLargest:
    def __init__(self, k: int, nums: list[int]):
        self.k = k
        self.nums = sorted(nums, reverse=True)

    def add(self, val: int) -> int:
        self.nums.append(val)
        self.nums.sort(reverse=True)
        return self.nums[self.k - 1]


obj = KthLargest(3, [4, 5, 8, 2])
print(obj.add(3))
print(obj.add(5))
print(obj.add(10))
print(obj.add(9))
print(obj.add(4))
4
5
5
8
8

Heap - O(log k), O(k); O(n log k), O(k)

import heapq


class KthLargest:

    def __init__(self, k: int, nums: list[int]):
        self.k = k
        self.min_heap: list[int] = []
        for num in nums:
            self.add(num)

    def add(self, val: int) -> int:
        heapq.heappush(self.min_heap, val)
        if len(self.min_heap) > self.k:
            heapq.heappop(self.min_heap)
        return self.min_heap[0]


obj = KthLargest(3, [4, 5, 8, 2])
print(obj.add(3))
print(obj.add(5))
print(obj.add(10))
print(obj.add(9))
print(obj.add(4))
4
5
5
8
8

1046. Last Stone Weight

You are given an array of integers stones where stones[i] is the weight of the ith stone.

We are playing a game with the stones. On each turn, we choose the heaviest two stones and smash them together. Suppose the heaviest two stones have weights x and y with x <= y. The result of this smash is:

  • If x == y, both stones are destroyed, and
  • If x != y, the stone of weight x is destroyed, and the stone of weight y has new weight y - x.

At the end of the game, there is at most one stone left.

Return the weight of the last remaining stone. If there are no stones left, return 0.

Example 1:

Input: stones = [2,7,4,1,8,1]
Output: 1
Explanation: 
We combine 7 and 8 to get 1 so the array converts to [2,4,1,1,1] then,
we combine 2 and 4 to get 2 so the array converts to [2,1,1,1] then,
we combine 2 and 1 to get 1 so the array converts to [1,1,1] then,
we combine 1 and 1 to get 0 so the array converts to [1] then that's the value of the last stone.

Example 2:

Input: stones = [1]
Output: 1

Constraints:

  • 1 <= stones.length <= 30
  • 1 <= stones[i] <= 1000

Sorting - O(n^2), O(1)

class Solution:
    def lastStoneWeight(self, stones: list[int]) -> int:
        while len(stones) > 1:
            stones.sort(reverse=True)
            x = stones.pop(0)
            y = stones.pop(0)
            if x != y:
                stones.append(x - y)

        return stones[0] if stones else 0


solution = Solution()
print(solution.lastStoneWeight([2, 7, 4, 1, 8, 1]))
print(solution.lastStoneWeight([1]))
1
1

Heap - O(n log n), O(n)

import heapq


class Solution:
    def lastStoneWeight(self, stones: list[int]) -> int:
        stones = [-stone for stone in stones]
        heapq.heapify(stones)

        while len(stones) > 1:
            x = heapq.heappop(stones)
            y = heapq.heappop(stones)

            if x != y:
                heapq.heappush(stones, x - y)

        return -stones[0] if stones else 0


solution = Solution()
print(solution.lastStoneWeight([2, 7, 4, 1, 8, 1]))
print(solution.lastStoneWeight([1]))
1
1

Medium

49. Group Anagrams

Given an array of strings strs, group the anagrams together. You can return the answer in any order.

An Anagram is a word or phrase formed by rearranging the letters of a different word or phrase, typically using all the original letters exactly once.

Example 1:

Input: strs = ["eat","tea","tan","ate","nat","bat"]
Output: [["bat"],["nat","tan"],["ate","eat","tea"]]

Example 2:

Input: strs = [""]
Output: [[""]]

Example 3:

Input: strs = ["a"]
Output: [["a"]]

Constraints:

  • 1 <= strs.length <= 104
  • 0 <= strs[i].length <= 100
  • strs[i] consists of lowercase English letters.

Brute Force - O(n^2 * m), O(n)

class Solution:
    def groupAnagrams(self, strs: list[str]) -> list[list[str]]:
        def is_anagram(s: str, t: str) -> bool:
            if len(s) != len(t):
                return False

            for char in s:
                is_matched = False

                for i, c in enumerate(t):
                    if c == char:
                        t = t[:i] + t[i + 1 :]
                        is_matched = True
                        break

                if not is_matched:
                    return False

            return True

        anagram_groups: list[list[str]] = []
        used = [False] * len(strs)

        for i, str_i in enumerate(strs):
            if not used[i]:
                group = [str_i]
                used[i] = True
                for j, str_j in enumerate(strs[i + 1 :], start=i + 1):
                    if not used[j] and is_anagram(str_i, str_j):
                        group.append(str_j)
                        used[j] = True
                anagram_groups.append(group)

        return anagram_groups


solution = Solution()
print(solution.groupAnagrams(strs=["eat", "tea", "tan", "ate", "nat", "bat"]))
print(solution.groupAnagrams(strs=[""]))
print(solution.groupAnagrams(strs=["a"]))
[['eat', 'tea', 'ate'], ['tan', 'nat'], ['bat']]
[['']]
[['a']]

Arrays & Hashing - O(n m log(m)), O(n * m)

from collections import defaultdict


class Solution:
    def groupAnagrams(self, strs: list[str]) -> list[list[str]]:
        anagrams: dict[str, list[str]] = defaultdict(list)

        for s in strs:
            sorted_str = "".join(sorted(s))
            anagrams[sorted_str].append(s)

        return list(anagrams.values())


solution = Solution()
print(solution.groupAnagrams(strs=["eat", "tea", "tan", "ate", "nat", "bat"]))
print(solution.groupAnagrams(strs=[""]))
print(solution.groupAnagrams(strs=["a"]))
[['eat', 'tea', 'ate'], ['tan', 'nat'], ['bat']]
[['']]
[['a']]

Using Character Count as Key - O(n m), O(n m)

from collections import defaultdict


class Solution:
    def groupAnagrams(self, strs: list[str]) -> list[list[str]]:
        anagrams: dict[tuple[int, ...], list[str]] = defaultdict(list)

        for s in strs:
            count = [0] * 26
            for char in s:
                count[ord(char) - ord("a")] += 1
            key = tuple(count)
            anagrams[key].append(s)

        return list(anagrams.values())


solution = Solution()
print(solution.groupAnagrams(strs=["eat", "tea", "tan", "ate", "nat", "bat"]))
print(solution.groupAnagrams(strs=[""]))
print(solution.groupAnagrams(strs=["a"]))
[['eat', 'tea', 'ate'], ['tan', 'nat'], ['bat']]
[['']]
[['a']]

Using Prime Numbers - O(n m), O(n m)

class Solution:
    def groupAnagrams(self, strs: list[str]) -> list[list[str]]:
        prime_numbers = {
            "a": 2,
            "b": 3,
            "c": 5,
            "d": 7,
            "e": 11,
            "f": 13,
            "g": 17,
            "h": 19,
            "i": 23,
            "j": 29,
            "k": 31,
            "l": 37,
            "m": 41,
            "n": 43,
            "o": 47,
            "p": 53,
            "q": 59,
            "r": 61,
            "s": 67,
            "t": 71,
            "u": 73,
            "v": 79,
            "w": 83,
            "x": 89,
            "y": 97,
            "z": 101,
        }

        anagrams: dict[int, list[str]] = {}

        for word in strs:
            product = 1
            for char in word:
                product *= prime_numbers[char]

            if product in anagrams:
                anagrams[product].append(word)
            else:
                anagrams[product] = [word]

        return list(anagrams.values())


solution = Solution()
print(solution.groupAnagrams(strs=["eat", "tea", "tan", "ate", "nat", "bat"]))
print(solution.groupAnagrams(strs=[""]))
print(solution.groupAnagrams(strs=["a"]))
[['eat', 'tea', 'ate'], ['tan', 'nat'], ['bat']]
[['']]
[['a']]

167. Two Sum II - Input Array Is Sorted

Given a 1-indexed array of integers numbers that is already sorted in non-decreasing order, find two numbers such that they add up to a specific target number. Let these two numbers be numbers[index1] and numbers[index2] where 1 <= index1< index2<= numbers.length.

Return the indices of the two numbers, index1 and index2, added by one as an integer array [index1, index2] of length 2.

The tests are generated such that there is exactly one solution. You may not use the same element twice.

Your solution must use only constant extra space.

Example 1:

Input: numbers = [2,7,11,15], target = 9
Output: [1,2]
Explanation: The sum of 2 and 7 is 9. Therefore, index1 = 1, index2 = 2. We return [1, 2].

Example 2:

Input: numbers = [2,3,4], target = 6
Output: [1,3]
Explanation: The sum of 2 and 4 is 6. Therefore index1 = 1, index2 = 3. We return [1, 3].

Example 3:

Input: numbers = [-1,0], target = -1
Output: [1,2]
Explanation: The sum of -1 and 0 is -1. Therefore index1 = 1, index2 = 2. We return [1, 2].

Constraints:

  • 2 <= numbers.length <= 3 * 104
  • -1000 <= numbers[i] <= 1000
  • numbers is sorted in non-decreasing order.
  • -1000 <= target <= 1000
  • The tests are generated such that there is exactly one solution.

Brute Force - O(n^2), O(1)

class Solution:
    def twoSum(self, numbers: list[int], target: int) -> list[int]:
        n = len(numbers)

        for i in range(n):
            for j in range(i + 1, n):
                if numbers[i] + numbers[j] == target:
                    return [i + 1, j + 1]

        return []


solution = Solution()
print(solution.twoSum(numbers=[2, 7, 11, 15], target=9))
print(solution.twoSum(numbers=[2, 3, 4], target=6))
print(solution.twoSum(numbers=[-1, 0], target=-1))
[1, 2]
[1, 3]
[1, 2]

Arrays & Hashing - O(n), O(n)

class Solution:
    def twoSum(self, numbers: list[int], target: int) -> list[int]:
        numbers_index: dict[int, int] = {}

        for index, num in enumerate(numbers):
            complement = target - num

            if complement in numbers_index:
                return [numbers_index[complement] + 1, index + 1]

            numbers_index[num] = index

        return []


solution = Solution()
print(solution.twoSum(numbers=[2, 7, 11, 15], target=9))
print(solution.twoSum(numbers=[2, 3, 4], target=6))
print(solution.twoSum(numbers=[-1, 0], target=-1))
[1, 2]
[1, 3]
[1, 2]

Two Pointers - O(n), O(1)

class Solution:
    def twoSum(self, numbers: list[int], target: int) -> list[int]:
        left, right = 0, len(numbers) - 1

        while left < right:
            current_sum = numbers[left] + numbers[right]

            if current_sum == target:
                return [left + 1, right + 1]

            if current_sum < target:
                left += 1
            else:
                right -= 1

        return []


solution = Solution()
print(solution.twoSum(numbers=[2, 7, 11, 15], target=9))
print(solution.twoSum(numbers=[2, 3, 4], target=6))
print(solution.twoSum(numbers=[-1, 0], target=-1))
[1, 2]
[1, 3]
[1, 2]

15. 3Sum

Given an integer array nums, return all the triplets [nums[i], nums[j], nums[k]] such that i != j, i != k, and j != k, and nums[i] + nums[j] + nums[k] == 0.

Notice that the solution set must not contain duplicate triplets.

Example 1:

Input: nums = [-1,0,1,2,-1,-4]
Output: [[-1,-1,2],[-1,0,1]]
Explanation: 
nums[0] + nums[1] + nums[2] = (-1) + 0 + 1 = 0.
nums[1] + nums[2] + nums[4] = 0 + 1 + (-1) = 0.
nums[0] + nums[3] + nums[4] = (-1) + 2 + (-1) = 0.
The distinct triplets are [-1,0,1] and [-1,-1,2].
Notice that the order of the output and the order of the triplets does not matter.

Example 2:

Input: nums = [0,1,1]
Output: []
Explanation: The only possible triplet does not sum up to 0.

Example 3:

Input: nums = [0,0,0]
Output: [[0,0,0]]
Explanation: The only possible triplet sums up to 0.

Constraints:

  • 3 <= nums.length <= 3000
  • -105<= nums[i] <= 105

Brute Force - O(n^3), O(n)

class Solution:
    def threeSum(self, nums: list[int]) -> list[list[int]]:
        n = len(nums)
        triplets: list[list[int]] = []

        for i in range(n):
            for j in range(i + 1, n):
                for k in range(j + 1, n):
                    if nums[i] + nums[j] + nums[k] == 0:
                        triplet = sorted([nums[i], nums[j], nums[k]])
                        if triplet not in triplets:
                            triplets.append(triplet)

        return triplets


solution = Solution()
print(solution.threeSum(nums=[-1, 0, 1, 2, -1, -4]))
print(solution.threeSum(nums=[0, 1, 1]))
print(solution.threeSum(nums=[0, 0, 0]))
[[-1, 0, 1], [-1, -1, 2]]
[]
[[0, 0, 0]]

39. Combination Sum

Given an array of distinct integers candidates and a target integer target, return a list of all unique combinations of candidates where the chosen numbers sum to target. You may return the combinations in any order.

The same number may be chosen from candidates an unlimited number of times. Two combinations are unique if the frequency of at least one of the chosen numbers is different.

The test cases are generated such that the number of unique combinations that sum up to target is less than 150 combinations for the given input.

Example 1:

Input: candidates = [2,3,6,7], target = 7
Output: [[2,2,3],[7]]
Explanation:
2 and 3 are candidates, and 2 + 2 + 3 = 7. Note that 2 can be used multiple times.
7 is a candidate, and 7 = 7.
These are the only two combinations.

Example 2:

Input: candidates = [2,3,5], target = 8
Output: [[2,2,2,2],[2,3,3],[3,5]]

Example 3:

Input: candidates = [2], target = 1
Output: []

Constraints:

  • 1 <= candidates.length <= 30
  • 2 <= candidates[i] <= 40
  • All elements of candidates are distinct.
  • 1 <= target <= 40

Backtracking - O(n^2), O(n)

class Solution:
    def combinationSum(self, candidates: list[int], target: int) -> list[list[int]]:
        result: list[list[int]] = []

        def backtrack(start: int, current: list[int], total: int) -> None:
            if total == target:
                result.append(current[:])
                return
            if total > target:
                return

            for i in range(start, len(candidates)):
                current.append(candidates[i])
                backtrack(i, current, total + candidates[i])
                current.pop()

        backtrack(0, [], 0)
        return result


solution = Solution()
print(solution.combinationSum([2, 3, 6, 7], 7))
print(solution.combinationSum([2, 3, 5], 8))
print(solution.combinationSum([2], 1))
[[2, 2, 3], [7]]
[[2, 2, 2, 2], [2, 3, 3], [3, 5]]
[]

143. Reorder List

You are given the head of a singly linked-list. The list can be represented as:

L0 → L1 → … → Ln - 1 → Ln

Reorder the list to be on the following form:

L0 → Ln → L1 → Ln - 1 → L2 → Ln - 2 → …

You may not modify the values in the list's nodes. Only nodes themselves may be changed.

Example 1:

Input: head = [1,2,3,4]
Output: [1,4,2,3]

Example 2:

Input: head = [1,2,3,4,5]
Output: [1,5,2,4,3]

Constraints:

  • The number of nodes in the list is in the range [1, 5 * 104].
  • 1 <= Node.val <= 1000

Two Pointers - O(n), O(1)

class Solution:
    def reorderList(self, head: Optional[ListNode]) -> None:
        """
        Do not return anything, modify head in-place instead.
        """

        # Base case: If the list is empty or has only one node, it cannot be reordered
        if not head or not head.next:
            return

        # Use two pointers to find the middle of the list
        slow: Optional[ListNode] = head
        fast: Optional[ListNode] = head.next
        while slow and slow.next and fast and fast.next:
            slow = slow.next
            fast = fast.next.next

        # Reverse the second half of the list from slow.next
        prev: Optional[ListNode] = None
        curr: Optional[ListNode] = slow.next if slow else None
        if slow:
            slow.next = None
        while curr:

            # Store the next node
            next_temp = curr.next

            # Reverse the link
            curr.next = prev

            # Move prev to the current node and the current node to the next node
            prev, curr = curr, next_temp

        # Merge the two halves together
        first: Optional[ListNode] = head
        second: Optional[ListNode] = prev
        while first and second:

            # Store the next nodes
            temp1, temp2 = first.next, second.next

            # Reorder nodes
            first.next, second.next = second, temp1

            # Move to the next nodes
            first, second = temp1, temp2


solution = Solution()
head = list_to_linked_list([1, 2, 3, 4])
solution.reorderList(head)
print(linked_list_to_list(head))
head = list_to_linked_list([1, 2, 3, 4, 5])
solution.reorderList(head)
print(linked_list_to_list(head))
[1, 4, 2, 3]
[1, 5, 2, 4, 3]

Hard

778. Swim in Rising Water

You are given an n x n integer matrix grid where each value grid[i][j] represents the elevation at that point (i, j).

The rain starts to fall. At time t, the depth of the water everywhere is t. You can swim from a square to another 4-directionally adjacent square if and only if the elevation of both squares individually are at most t. You can swim infinite distances in zero time. Of course, you must stay within the boundaries of the grid during your swim.

Return the least time until you can reach the bottom right square (n - 1, n - 1) if you start at the top left square (0, 0).

Example 1:

Input: grid = [[0,2],[1,3]]
Output: 3
Explanation:
At time 0, you are in grid location (0, 0).
You cannot go anywhere else because 4-directionally adjacent neighbors have a higher elevation than t = 0.
You cannot reach point (1, 1) until time 3.
When the depth of water is 3, we can swim anywhere inside the grid.

Example 2:

Input: grid = [[0,1,2,3,4],[24,23,22,21,5],[12,13,14,15,16],[11,17,18,19,20],[10,9,8,7,6]]
Output: 16
Explanation: The final route is shown.
We need to wait until time 16 so that (0, 0) and (4, 4) are connected.

Constraints:

  • n == grid.length
  • n == grid[i].length
  • 1 <= n <= 50
  • 0 <= grid[i][j] < n2
  • Each value grid[i][j] is unique.

Binary Search - O(n^2 * log(n^2)), O(n^2)

from collections import deque


class Solution:
    def swimInWater(self, grid: list[list[int]]) -> int:
        n = len(grid)

        def can_swim(t: int) -> bool:
            directions = [(0, 1), (1, 0), (0, -1), (-1, 0)]
            queue: deque[tuple[int, int]] = deque([(0, 0)])
            visited: set[tuple[int, int]] = set()
            visited.add((0, 0))

            while queue:
                x, y = queue.popleft()
                if x == n - 1 and y == n - 1:
                    return True

                for dx, dy in directions:
                    nx, ny = x + dx, y + dy
                    if (
                        0 <= nx < n
                        and 0 <= ny < n
                        and (nx, ny) not in visited
                        and grid[nx][ny] <= t
                    ):
                        visited.add((nx, ny))
                        queue.append((nx, ny))

            return False

        low, high = grid[0][0], max(max(row) for row in grid)

        while low < high:
            mid = (low + high) // 2
            if can_swim(mid):
                high = mid
            else:
                low = mid + 1

        return low