2
2
second: {
3
3
voxel_generator {
4
4
point_cloud_range : [0, -40, -3, 70.4, 40, 1]
5
- # point_cloud_range : [0, -32.0, -3, 52.8, 32.0, 1]
6
5
voxel_size : [0.05, 0.05, 0.1]
7
6
max_number_of_points_per_voxel : 5
8
7
}
@@ -48,31 +47,29 @@ model: {
48
47
classification_weight: 1.0
49
48
localization_weight: 2.0
50
49
}
50
+ num_point_features: 4 # model's num point feature should be independent of dataset
51
51
# Outputs
52
52
use_sigmoid_score: true
53
53
encode_background_as_zeros: true
54
54
encode_rad_error_by_sin: true
55
55
56
56
use_direction_classifier: true # this can help for orientation benchmark
57
57
direction_loss_weight: 0.2 # enough.
58
- use_aux_classifier: false
58
+
59
59
# Loss
60
60
pos_class_weight: 1.0
61
61
neg_class_weight: 1.0
62
62
63
63
loss_norm_type: NormByNumPositives
64
64
# Postprocess
65
- post_center_limit_range: [0, -40, -3.0 , 70.4, 40, 0.0 ]
65
+ post_center_limit_range: [0, -40, -2.2 , 70.4, 40, 0.8 ]
66
66
use_rotate_nms: true
67
67
use_multi_class_nms: false
68
68
nms_pre_max_size: 1000
69
69
nms_post_max_size: 100
70
- nms_score_threshold: 0.3
70
+ nms_score_threshold: 0.3 # 0.4 in submit, but 0.3 can get better hard performance
71
71
nms_iou_threshold: 0.01
72
72
73
- use_bev: false
74
- num_point_features: 4
75
- without_reflectivity: false
76
73
box_coder: {
77
74
ground_box3d_coder: {
78
75
linear_dim: false
@@ -83,7 +80,7 @@ model: {
83
80
anchor_generators: {
84
81
anchor_generator_range: {
85
82
sizes: [1.6, 3.9, 1.56] # wlh
86
- anchor_ranges: [0, -40.0, -1.0 , 70.4, 40.0, -1.0 ] # carefully set z center
83
+ anchor_ranges: [0, -40.0, -1.00 , 70.4, 40.0, -1.00 ] # carefully set z center
87
84
rotations: [0, 1.57] # DON'T modify this unless you are very familiar with my code.
88
85
matched_threshold : 0.6
89
86
unmatched_threshold : 0.45
@@ -100,91 +97,102 @@ model: {
100
97
}
101
98
}
102
99
103
-
104
100
train_input_reader: {
105
- max_num_epochs : 160
106
- batch_size: 6
107
- prefetch_size : 25
108
- max_number_of_voxels: 16000
109
- shuffle_points: true
110
- num_workers: 3
111
- groundtruth_localization_noise_std: [1.0, 1.0, 0.5]
112
- # groundtruth_rotation_uniform_noise: [-0.3141592654, 0.3141592654]
113
- # groundtruth_rotation_uniform_noise: [-1.57, 1.57]
114
- groundtruth_rotation_uniform_noise: [-0.78539816, 0.78539816]
115
- global_rotation_uniform_noise: [-0.78539816, 0.78539816]
116
- global_scaling_uniform_noise: [0.95, 1.05]
117
- global_random_rotation_range_per_object: [0, 0] # pi/4 ~ 3pi/4
118
- anchor_area_threshold: -1
119
- remove_points_after_sample: true
120
- groundtruth_points_drop_percentage: 0.0
121
- groundtruth_drop_max_keep_points: 15
122
- database_sampler {
123
- database_info_path: "/media/yy/My Passport/datasets/kitti/kitti_dbinfos_train.pkl"
124
- sample_groups {
125
- name_to_max_num {
126
- key: "Car"
127
- value: 15
128
- }
129
- }
130
- database_prep_steps {
131
- filter_by_min_num_points {
132
- min_num_point_pairs {
101
+ dataset: {
102
+ dataset_class_name: "KittiDataset"
103
+ kitti_info_path: "/media/yy/960evo/datasets/kitti/kitti_infos_train.pkl"
104
+ kitti_root_path: "/media/yy/960evo/datasets/kitti"
105
+ }
106
+
107
+ batch_size: 8
108
+ preprocess: {
109
+ max_number_of_voxels: 17000
110
+ shuffle_points: true
111
+ num_workers: 3
112
+ groundtruth_localization_noise_std: [1.0, 1.0, 0.5]
113
+ # groundtruth_rotation_uniform_noise: [-0.3141592654, 0.3141592654]
114
+ # groundtruth_rotation_uniform_noise: [-1.57, 1.57]
115
+ groundtruth_rotation_uniform_noise: [-0.78539816, 0.78539816]
116
+ global_rotation_uniform_noise: [-0.78539816, 0.78539816]
117
+ global_scaling_uniform_noise: [0.95, 1.05]
118
+ global_random_rotation_range_per_object: [0, 0] # pi/4 ~ 3pi/4
119
+ global_translate_noise_std: [0, 0, 0]
120
+ anchor_area_threshold: -1
121
+ remove_points_after_sample: true
122
+ groundtruth_points_drop_percentage: 0.0
123
+ groundtruth_drop_max_keep_points: 15
124
+ remove_unknown_examples: false
125
+ remove_environment: false
126
+ database_sampler {
127
+ database_info_path: "/media/yy/960evo/datasets/kitti/kitti_dbinfos_train.pkl"
128
+ sample_groups {
129
+ name_to_max_num {
133
130
key: "Car"
134
- value: 5
131
+ value: 15
135
132
}
136
133
}
137
- }
138
- database_prep_steps {
139
- filter_by_difficulty {
140
- removed_difficulties: [-1]
134
+ database_prep_steps {
135
+ filter_by_min_num_points {
136
+ min_num_point_pairs {
137
+ key: "Car"
138
+ value: 5
139
+ }
140
+ }
141
+ }
142
+ database_prep_steps {
143
+ filter_by_difficulty {
144
+ removed_difficulties: [-1]
145
+ }
141
146
}
147
+ global_random_rotation_range_per_object: [0, 0]
148
+ rate: 1.0
142
149
}
143
- global_random_rotation_range_per_object: [0, 0]
144
- rate: 1.0
145
150
}
146
-
147
- remove_unknown_examples: false
148
- remove_environment: false
149
- kitti_info_path: "/media/yy/My Passport/datasets/kitti/kitti_infos_train.pkl"
150
- kitti_root_path: "/media/yy/My Passport/datasets/kitti"
151
151
}
152
152
153
153
train_config: {
154
154
optimizer: {
155
155
adam_optimizer: {
156
156
learning_rate: {
157
157
one_cycle: {
158
- lr_max: 3e -3
158
+ lr_max: 2.25e -3
159
159
moms: [0.95, 0.85]
160
160
div_factor: 10.0
161
161
pct_start: 0.4
162
162
}
163
163
}
164
- weight_decay: 0.01 # super converge. decrease this when you increase steps.
164
+ weight_decay: 0.01
165
165
}
166
166
fixed_weight_decay: true
167
167
use_moving_average: false
168
168
}
169
- steps: 30950 # 619 * 50, super converge. increase this to achieve slightly better results
170
- steps_per_eval: 3095 # 619 * 5
169
+ # steps: 99040 # 1238 * 120
170
+ # steps: 49520 # 619 * 80
171
+ # steps: 30950 # 619 * 80
172
+ # steps_per_eval: 3095 # 619 * 5
173
+ steps: 23200 # 464 * 50
174
+ steps_per_eval: 2320 # 464 * 5
175
+
171
176
save_checkpoints_secs : 1800 # half hour
172
177
save_summary_steps : 10
173
- enable_mixed_precision: false
178
+ enable_mixed_precision: false
174
179
loss_scale_factor : 8.0
175
180
clear_metrics_every_epoch: true
176
181
}
177
182
178
183
eval_input_reader: {
179
- batch_size: 6
180
- max_num_epochs : 160
181
- prefetch_size : 25
182
- max_number_of_voxels: 40000
183
- shuffle_points: false
184
- num_workers: 3
185
- anchor_area_threshold: -1
186
- remove_environment: false
187
- kitti_info_path: "/media/yy/My Passport/datasets/kitti/kitti_infos_val.pkl"
188
- # kitti_info_path: "/media/yy/My Passport/datasets/kitti/kitti_infos_test.pkl"
189
- kitti_root_path: "/media/yy/My Passport/datasets/kitti"
184
+ dataset: {
185
+ dataset_class_name: "KittiDataset"
186
+ kitti_info_path: "/media/yy/960evo/datasets/kitti/kitti_infos_val.pkl"
187
+ # kitti_info_path: "/media/yy/960evo/datasets/kitti/kitti_infos_test.pkl"
188
+ kitti_root_path: "/media/yy/960evo/datasets/kitti"
189
+ }
190
+ batch_size: 8
191
+ preprocess: {
192
+ max_number_of_voxels: 40000
193
+ shuffle_points: false
194
+ num_workers: 3
195
+ anchor_area_threshold: -1
196
+ remove_environment: false
197
+ }
190
198
}
0 commit comments