Skip to content

Commit

Permalink
[Typing][A-27,A-28,A-32,A-33,A-35,A-36] Add type annotations for `pad…
Browse files Browse the repository at this point in the history
…dle/nn/initializer/*` (PaddlePaddle#65206)
  • Loading branch information
gouzil authored Jun 16, 2024
1 parent 8261cde commit 448c929
Show file tree
Hide file tree
Showing 8 changed files with 167 additions and 53 deletions.
24 changes: 19 additions & 5 deletions python/paddle/nn/initializer/assign.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,11 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import annotations

from typing import TYPE_CHECKING, Any, Sequence

import paddle
from paddle import _C_ops

Expand All @@ -23,6 +28,9 @@
)
from .initializer import Initializer

if TYPE_CHECKING:
import numpy.typing as npt

__all__ = []


Expand All @@ -38,19 +46,21 @@ class NumpyArrayInitializer(Initializer):
"""

def __init__(self, value):
def __init__(self, value: npt.NDArray[Any]) -> None:
import numpy

assert isinstance(value, numpy.ndarray)
super().__init__()
self._value = value

def forward(self, var, block=None):
def forward(
self, var: paddle.Tensor, block: paddle.pir.Block | None = None
) -> paddle.Tensor | None:
"""Initialize the input tensor with Numpy array.
Args:
var(Tensor): Tensor that needs to be initialized.
block(Block, optional): The block in which initialization ops
block(Block|None, optional): The block in which initialization ops
should be added. Used in static graph only, default None.
Returns:
Expand Down Expand Up @@ -172,7 +182,7 @@ class Assign(NumpyArrayInitializer):
Args:
value (Tensor|numpy.ndarray|list|tuple): numpy array, list, tuple, or tensor to initialize the parameter.
name(str, optional): Normally there is no need for user to set this
name(str|None, optional): Normally there is no need for user to set this
property. For more information, please refer to :ref:`api_guide_Name`. Default is None.
Returns:
Expand Down Expand Up @@ -239,7 +249,11 @@ class Assign(NumpyArrayInitializer):
[6.]
"""

def __init__(self, value, name=None):
def __init__(
self,
value: npt.NDArray[Any] | Sequence[int] | paddle.Tensor,
name: str | None = None,
) -> None:
import numpy

check_type(
Expand Down
11 changes: 8 additions & 3 deletions python/paddle/nn/initializer/bilinear.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,8 +12,11 @@
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import annotations

import numpy as np

import paddle
from paddle import _C_ops, pir

from ...base import core, framework, unique_name
Expand Down Expand Up @@ -74,16 +77,18 @@ class Bilinear(Initializer):
"""

def __init__(self):
def __init__(self) -> None:
"""Constructor for BilinearInitializer."""
super().__init__()

def forward(self, var, block=None):
def forward(
self, var: paddle.Tensor, block: pir.Block | None = None
) -> paddle.Tensor | None:
"""Initialize the input tensor with Bilinear initialization.
Args:
var(Tensor): Tensor that needs to be initialized.
block(Block, optional): The block in which initialization ops
block(Block|None, optional): The block in which initialization ops
should be added. Used in static graph only, default None.
Returns:
Expand Down
2 changes: 1 addition & 1 deletion python/paddle/nn/initializer/constant.py
Original file line number Diff line number Diff line change
Expand Up @@ -47,7 +47,7 @@ def forward(
self,
var: paddle.Tensor,
block: paddle.pir.Block | None = None,
):
) -> paddle.Tensor | None:
"""Initialize the input tensor with constant.
Args:
Expand Down
22 changes: 20 additions & 2 deletions python/paddle/nn/initializer/initializer.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,8 +16,10 @@

import functools
import math
from typing import TYPE_CHECKING, Literal

import numpy as np
from typing_extensions import TypeAlias

import paddle

Expand All @@ -28,6 +30,22 @@
)
from .lazy_init import lazy_init_helper

if TYPE_CHECKING:
_NonLinearity: TypeAlias = Literal[ # noqa: PYI047
"sigmoid",
"linear",
"conv1d",
"conv2d",
"conv3d",
"conv1d_transpose",
"conv2d_transpose",
"conv3d_transpose",
"tanh",
"relu",
"leaky_relu",
"selu",
]

__all__ = []


Expand All @@ -40,7 +58,7 @@ class Initializer:
directly, but need to use one of its implementations.
"""

def __init__(self):
def __init__(self) -> None:
pass

def __call__(
Expand All @@ -53,7 +71,7 @@ def __call__(

def forward(
self, param: paddle.Tensor, block: paddle.pir.Block | None = None
):
) -> paddle.Tensor | None:
"""Add corresponding initialization operations to the network."""
raise NotImplementedError()

Expand Down
38 changes: 28 additions & 10 deletions python/paddle/nn/initializer/kaiming.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,8 +12,11 @@
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import annotations

# TODO: define the initializers of Kaiming functions in neural network
import math
from typing import TYPE_CHECKING

import paddle
from paddle import _C_ops
Expand All @@ -26,6 +29,9 @@
)
from .initializer import Initializer, calculate_gain

if TYPE_CHECKING:
from .initializer import _NonLinearity

__all__ = []


Expand Down Expand Up @@ -64,12 +70,12 @@ class MSRAInitializer(Initializer):

def __init__(
self,
uniform=True,
fan_in=None,
seed=0,
negative_slope=0,
nonlinearity='relu',
):
uniform: bool = True,
fan_in: float | None = None,
seed: int = 0,
negative_slope: float = 0,
nonlinearity: _NonLinearity = 'relu',
) -> None:
"""Constructor for MSRAInitializer"""
assert uniform is not None
assert seed is not None
Expand All @@ -80,12 +86,14 @@ def __init__(
self._negative_slope = negative_slope
self._nonlinearity = nonlinearity

def forward(self, var, block=None):
def forward(
self, var: paddle.Tensor, block: paddle.pir.Block | None = None
) -> paddle.Tensor | None:
"""Initialize the input tensor with MSRA initialization.
Args:
var(Tensor): Tensor that needs to be initialized.
block(Block, optional): The block in which initialization ops
block(Block|None, optional): The block in which initialization ops
should be added. Used in static graph only, default None.
Returns:
Expand Down Expand Up @@ -271,7 +279,12 @@ class KaimingNormal(MSRAInitializer):
"""

def __init__(self, fan_in=None, negative_slope=0.0, nonlinearity='relu'):
def __init__(
self,
fan_in: float | None = None,
negative_slope: float = 0.0,
nonlinearity: str = 'relu',
) -> None:
super().__init__(
uniform=False,
fan_in=fan_in,
Expand Down Expand Up @@ -317,7 +330,12 @@ class KaimingUniform(MSRAInitializer):
"""

def __init__(self, fan_in=None, negative_slope=0.0, nonlinearity='relu'):
def __init__(
self,
fan_in: float | None = None,
negative_slope: float = 0.0,
nonlinearity: str = 'relu',
) -> None:
super().__init__(
uniform=True,
fan_in=fan_in,
Expand Down
45 changes: 35 additions & 10 deletions python/paddle/nn/initializer/normal.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,9 @@
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import annotations

import paddle
from paddle import _C_ops, pir

from ...base import core, framework, unique_name
Expand All @@ -36,7 +39,9 @@ class NormalInitializer(Initializer):
"""

def __init__(self, loc=0.0, scale=1.0, seed=0):
def __init__(
self, loc: float = 0.0, scale: float = 1.0, seed: int = 0
) -> None:
assert loc is not None
assert scale is not None
assert seed is not None
Expand All @@ -45,12 +50,14 @@ def __init__(self, loc=0.0, scale=1.0, seed=0):
self._std_dev = scale
self._seed = seed

def forward(self, var, block=None):
def forward(
self, var: paddle.Tensor, block: pir.Block | None = None
) -> paddle.Tensor | None:
"""Initialize the input tensor with Normal distribution.
Args:
var(Tensor): Tensor that needs to be initialized.
block(Block, optional): The block in which initialization ops
block(Block|None, optional): The block in which initialization ops
should be added. Used in static graph only, default None.
Returns:
Expand Down Expand Up @@ -119,7 +126,7 @@ class Normal(NormalInitializer):
Args:
mean (float, optional): mean of the normal distribution. Default is 0.0.
std (float, optional): standard deviation of the normal distribution. Default is 1.0.
name(str, optional): The default value is None. Normally there is no need for user to set this
name(str|None, optional): The default value is None. Normally there is no need for user to set this
property. For more information, please refer to :ref:`api_guide_Name`. Default: None.
Returns:
Expand Down Expand Up @@ -156,7 +163,9 @@ class Normal(NormalInitializer):
[[ 1.0754838 -4.071067 ]]])
"""

def __init__(self, mean=0.0, std=1.0, name=None):
def __init__(
self, mean: float = 0.0, std: float = 1.0, name: str | None = None
) -> None:
assert mean is not None, 'mean should not be None'
assert std is not None, 'std should not be None'
super().__init__(loc=mean, scale=std, seed=0)
Expand All @@ -178,7 +187,14 @@ class TruncatedNormalInitializer(Initializer):
"""

def __init__(self, loc=0.0, scale=1.0, seed=0, a=-2.0, b=2.0):
def __init__(
self,
loc: float = 0.0,
scale: float = 1.0,
seed: int = 0,
a: float = -2.0,
b: float = 2.0,
) -> None:
assert loc is not None
assert scale is not None
assert seed is not None
Expand All @@ -191,12 +207,14 @@ def __init__(self, loc=0.0, scale=1.0, seed=0, a=-2.0, b=2.0):
self._a = a
self._b = b

def forward(self, var, block=None):
def forward(
self, var: paddle.Tensor, block: pir.Block | None = None
) -> paddle.Tensor | None:
"""Initialize the input tensor with TruncatedNormal distribution.
Args:
var(Tensor): Tensor that needs to be initialized.
block(Block, optional): The block in which initialization ops
block(Block|None, optional): The block in which initialization ops
should be added. Used in static graph only, default None.
Returns:
Expand Down Expand Up @@ -289,7 +307,7 @@ class TruncatedNormal(TruncatedNormalInitializer):
std (float, optional): Standard deviation of the normal distribution. Default is :math:`1.0`.
a (float, optional): The minimum cutoff value. Default is -2.0.
b (float, optional): The maximum cutoff value. Default is 2.0.
name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
name (str|None, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
Returns:
A parameter initialized by truncated normal distribution (Gaussian distribution).
Expand Down Expand Up @@ -325,7 +343,14 @@ class TruncatedNormal(TruncatedNormalInitializer):
[[-0.11380529 -3.0696259 ]]])
"""

def __init__(self, mean=0.0, std=1.0, a=-2.0, b=2.0, name=None):
def __init__(
self,
mean: float = 0.0,
std: float = 1.0,
a: float = -2.0,
b: float = 2.0,
name: str | None = None,
) -> None:
assert mean is not None, 'mean should not be None'
assert std is not None, 'std should not be None'
assert a is not None, 'a should not be None'
Expand Down
Loading

0 comments on commit 448c929

Please sign in to comment.