The aim of this project is to classify the user-shelf interaction. Three classes are considered:
Neutral | Positive | Negative |
---|---|---|
In order to generate *.npy
files, you can run data.py
script.
After this, you can use one of the following nets:
- CNN (
train_cnn.py
) - CNN2 (
train_cnn2.py
) - AlexNet (
train_alexnet.py
) - CaffeNet (
train_caffenet.py
)
python data.py -images dataset/hands/ [-data data.csv]
python train_cnn.py
python train_cnn2.py
python train_alexnet.py
python train_caffenet.py
This is a useful toolbox to annotate a set of images with different classes.
- Positive (hand with product)
- Negative (other)
- Neutral (only hand)
- Skip (bad image)
python annotation-toolbox.py -images dataset/hands/ [-data data.csv]
sudo apt-get install python3-pip python3-dev python-virtualenv # for Python 3.n
virtualenv -p python3 venv
. venv/bin/activate
The preceding command should change your prompt to the following:
(venv)$
Install TensorFlow in the active virtualenv environment:
pip3 install --upgrade tensorflow-gpu # for Python 3.n and GPU
Install the others library:
pip3 install --upgrade keras scikit-learn scikit-image h5py
- Daniele Liciotti | GitHub