Image Classification architectures implemented in PyTorch. Support MNIST, CIFAR10, ImageNet dataset.
Support LeNet, AlexNet, VGG, ResNet, DenseNet.
- torch
- torchvision
Note:
You can install all the python packages you needed by running:
sudo pip install -r requirements.txt
For MNIST and CIFAR10 dataset: open config.py, change the dataset_name, data_path, model_name .
For ImageNet dataset: download the ImageNet dataset and move validation images to labeled subfolders. See this
python main.py train
python main.py test
[2]Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks[C]//Advances in neural information processing systems. 2012: 1097-1105.
[3]Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv:1409.1556, 2014.
[4]He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 770-778.
[5]Huang G, Liu Z, Weinberger K Q, et al. Densely connected convolutional networks[J]. arXiv preprint arXiv:1608.06993, 2016.