Skip to content

daisenryaku/pytorch-classification

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

pytorch-classification

Image Classification architectures implemented in PyTorch. Support MNIST, CIFAR10, ImageNet dataset.

Support LeNet, AlexNet, VGG, ResNet, DenseNet.

Requirements

  • torch
  • torchvision

Note:

You can install all the python packages you needed by running:

sudo pip install -r requirements.txt

Setup data

For MNIST and CIFAR10 dataset: open config.py, change the dataset_name, data_path, model_name .

For ImageNet dataset: download the ImageNet dataset and move validation images to labeled subfolders. See this

Train model

python main.py train

Test

python main.py test

Citations

[1]LeCun Y, Boser B E, Denker J S, et al. Handwritten digit recognition with a back-propagation network[C]//Advances in neural information processing systems. 1990: 396-404.
[2]Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks[C]//Advances in neural information processing systems. 2012: 1097-1105.
[3]Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv:1409.1556, 2014.
[4]He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 770-778.
[5]Huang G, Liu Z, Weinberger K Q, et al. Densely connected convolutional networks[J]. arXiv preprint arXiv:1608.06993, 2016.

About

🍦Image classification with Pytorch.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages