AI-Powered Vision Analysis & Research Management System
π Live Demo: https://mutsa.daemonx.cc
A comprehensive media analysis platform built on the DAEMON Stack. This platform integrates advanced computer vision capabilities with intelligent research paper management, providing a unified system for media ingestion, AI analysis, and knowledge management.
- Media Ingestion: Upload images and videos (including YouTube links via
yt-dlp) - AI-Powered Analysis: Object detection, motion tracking, and visual data analysis
- Computer Vision: Integration with MediaPipe and YOLO for advanced vision tasks
- Interactive Viewer: Frame-by-frame video viewer with AI annotation overlay
- PDF Parsing: Automatic metadata extraction from research papers
- Knowledge Graph: Link related papers and build citation networks
- Semantic Search: AI-powered search through research database
- Annotation System: Highlight and annotate important sections
- Multi-Provider Support: HuggingFace (Free) β DeepSeek (Quality) β OpenRouter (Multi-Model)
- Contextual Assistance: Get help analyzing media and understanding research
- Streaming Responses: Real-time AI interaction with markdown support
This project uses the DAEMON Stack architecture:
- Framework: Django 5 + Django Ninja (REST API)
- Language: Python 3.12+ (Strict Type Hints)
- Server: Granian (Rust-based ASGI)
- Database: PostgreSQL with pgvector
- Cache: Redis
- Task Queue: Taskiq
- Hypermedia: HTMX (Server-driven interactivity)
- Reactivity: Alpine.js (Client-side state)
- Styling: Tailwind CSS
- Components: Django Components
- Providers: HuggingFace, DeepSeek, OpenRouter
- Vision: MediaPipe, OpenCV, YOLO
- Framework: Pydantic AI, Instructor, Outlines
- Package Manager: uv (Python), bun (JavaScript)
- Containerization: Docker + Docker Compose
- Deployment: Coolify-ready
- Monitoring: Logfire, Sentry
- Python 3.12+
- uv (Python package manager):
curl -LsSf https://astral.sh/uv/install.sh | sh - bun (JavaScript runtime):
curl -fsSL https://bun.sh/install | bash - Docker & Docker Compose (for production)
# 1. Clone the repository
git clone https://github.com/daemonXid/media-platform.git
cd media-platform
# 2. Environment Configuration
cp .env.example .env
# Edit .env with your credentials (AI API keys, database settings, etc.)
# 3. Install Dependencies
just setup
# 4. Start Development Server
just dev
# 5. Access the Platform
# - Home: http://localhost:2120
# - Admin: http://localhost:2120/admin/
# - API Docs: http://localhost:2120/api/docsUsername: daemon
Password: daemonkorea2026
Change these immediately after first login!
# Build and deploy the full stack
just deploy
# View logs
just deploy-logs
# Stop the stack
just deploy-down- Create a new service in Coolify
- Set the compose file to
docker-compose.prod.yml - Configure environment variables from
.env.example - Deploy!
media-platform/
βββ backend/
β βββ config/ # Django settings & URLs
β βββ modules/ # Modular application structure
β β βββ base/ # Core modules (auth, health, etc.)
β β βββ ai/ # AI provider abstraction & chatbot
β β βββ custom/ # Project-specific modules
β β βββ vision/ # Vision AI analysis
β β βββ smart_paper/ # Research paper management
β βββ templates/ # Global templates
β βββ static/ # Static assets
βββ crates/ # Rust performance modules (optional)
βββ scripts/ # Utility scripts
βββ Dockerfile # Production container
βββ docker-compose.yml # Development infrastructure
βββ docker-compose.prod.yml # Production stack
βββ Justfile # Task automation
βββ pyproject.toml # Python dependencies
βββ package.json # JavaScript dependencies
# Development
just dev # Start development server
just dev-lite # Start without Docker (SQLite)
just build # Build frontend assets
just mig # Run database migrations
just superuser # Create admin user
# Quality Assurance
just test # Run tests
just test-cov # Run tests with coverage
just lint # Run linters
just fmt # Format code
# Production
just prod # Run production server locally
just deploy # Deploy Docker stack
just deploy-logs # View production logs
# Utilities
just shell # Django shell
just modules # List auto-discovered modules
just clean # Clean build artifactsKey environment variables to configure in .env:
SECRET_KEY- Django secret key (auto-generated during setup)DEBUG- Debug mode (true/false)ALLOWED_HOSTS- Allowed hostnames
POSTGRES_DB- Database namePOSTGRES_USER- Database userPOSTGRES_PASSWORD- Database passwordPOSTGRES_HOST- Database host
AI_PROVIDER- Active provider (huggingface/deepseek/openrouter)HUGGINGFACE_API_KEY- HuggingFace API tokenDEEPSEEK_API_KEY- DeepSeek API keyOPENROUTER_API_KEY- OpenRouter API key
SENTRY_DSN- Sentry error trackingLOGFIRE_TOKEN- Logfire observability
See .env.example for the complete list.
This project follows the DAEMON Stack modular monolith pattern:
- Vertical Slicing: Each module contains its own models, views, templates, and logic
- Auto-Discovery: Modules are automatically registered (no manual INSTALLED_APPS editing)
- Interface Pattern: Modules communicate through well-defined interfaces
- Self-Contained: Each module can be developed, tested, and deployed independently
accounts- User authentication & profilescore- Homepage & global utilitieshealth- Health check endpointssettings- Site-wide configuration
providers- AI provider abstraction layerchatbot- AI chat interface
vision- Vision AI analysis systemsmart_paper- Research paper management
- β Secret key rotation via environment variables
- β CSRF protection enabled
- β SQL injection prevention (ORM)
- β XSS protection (Django templates)
- β Secure headers (django-cors-headers)
- β Rate limiting (django-axes)
- β HTTPS redirect in production
This project is licensed under the MIT License - see the LICENSE file for details.
Built with the DAEMON Stack philosophy:
- Simple > Complex
- Strict Modularity
- Vertical Slicing
- Modern Performance
Powered by:
Made with π₯ by xid