Skip to content

Commit

Permalink
first commit
Browse files Browse the repository at this point in the history
  • Loading branch information
njyoun committed Jul 16, 2020
0 parents commit 013361a
Show file tree
Hide file tree
Showing 10 changed files with 1,111 additions and 0 deletions.
155 changes: 155 additions & 0 deletions Evaluate.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,155 @@
import numpy as np
import os
import sys
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchvision
import torch.nn.init as init
import torch.utils.data as data
import torch.utils.data.dataset as dataset
import torchvision.datasets as dset
import torchvision.transforms as transforms
from torch.autograd import Variable
import torchvision.utils as v_utils
import matplotlib.pyplot as plt
import cv2
import math
from collections import OrderedDict
import copy
import time
from model.utils import DataLoader
from model.Reconstruction import *
from sklearn.metrics import roc_auc_score
from utils import *
import random

import argparse


parser = argparse.ArgumentParser(description="MNAD")
parser.add_argument('--gpus', nargs='+', type=str, help='gpus')
parser.add_argument('--batch_size', type=int, default=4, help='batch size for training')
parser.add_argument('--test_batch_size', type=int, default=1, help='batch size for test')
parser.add_argument('--epochs', type=int, default=60, help='number of epochs for training')
parser.add_argument('--loss_compact', type=float, default=0.01, help='weight of the feature compactness loss')
parser.add_argument('--loss_separate', type=float, default=0.01, help='weight of the feature separateness loss')
parser.add_argument('--h', type=int, default=256, help='height of input images')
parser.add_argument('--w', type=int, default=256, help='width of input images')
parser.add_argument('--c', type=int, default=3, help='channel of input images')
parser.add_argument('--lr', type=float, default=2e-4, help='initial learning rate')
parser.add_argument('--t_length', type=int, default=5, help='length of the frame sequences')
parser.add_argument('--fdim', type=int, default=512, help='channel dimension of the features')
parser.add_argument('--mdim', type=int, default=512, help='channel dimension of the memory items')
parser.add_argument('--msize', type=int, default=10, help='number of the memory items')
parser.add_argument('--alpha', type=float, default=0.7, help='weight for the anomality score')
parser.add_argument('--num_workers', type=int, default=2, help='number of workers for the train loader')
parser.add_argument('--num_workers_test', type=int, default=1, help='number of workers for the test loader')
parser.add_argument('--dataset_type', type=str, default='ped2', help='type of dataset: ped2, avenue, shanghai')
parser.add_argument('--dataset_path', type=str, default='./dataset/', help='directory of data')
parser.add_argument('--model_dir', type=str, help='directory of model')
parser.add_argument('--m_items_dir', type=str, help='directory of model')

args = parser.parse_args()

os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
if args.gpus is None:
gpus = "0"
os.environ["CUDA_VISIBLE_DEVICES"]= gpus
else:
gpus = ""
for i in range(len(args.gpus)):
gpus = gpus + args.gpus[i] + ","
os.environ["CUDA_VISIBLE_DEVICES"]= gpus[:-1]

torch.backends.cudnn.enabled = True # make sure to use cudnn for computational performance

test_folder = args.dataset_path+args.dataset_type+"/testing/frames"

# Loading dataset
test_dataset = DataLoader(test_folder, transforms.Compose([
transforms.ToTensor(),
]), resize_height=args.h, resize_width=args.w, time_step=args.t_length-1)

test_size = len(test_dataset)

test_batch = data.DataLoader(test_dataset, batch_size = args.test_batch_size,
shuffle=False, num_workers=args.num_workers_test, drop_last=False)


# Loading the trained model
model = torch.load(args.model_dir)
model.cuda()
m_items = torch.load(args.m_itmes_dir)
labels = np.load('./data/frame_labels_'+args.dataset_type+'.npy')

videos = OrderedDict()
videos_list = sorted(glob.glob(os.path.join(test_folder, '*')))
for video in videos_list:
video_name = video.split('/')[-1]
videos[video_name] = {}
videos[video_name]['path'] = video
videos[video_name]['frame'] = glob.glob(os.path.join(video, '*.jpg'))
videos[video_name]['frame'].sort()
videos[video_name]['length'] = len(videos[video_name]['frame'])

labels_list = []
label_length = 0
psnr_list = {}
feature_distance_list = {}

print('Evaluation of', args.dataset_type)

# Setting for video anomaly detection
for video in sorted(videos_new):
video_name = video.split('/')[-1]
labels_list = np.append(labels_list, labels[0][4+label_length:videos[video_name]['length']+label_length])
label_length += videos[video_name]['length']
psnr_list[video_name] = []
feature_distance_list[video_name] = []

label_length = 0
video_num = 0
label_length += videos[videos_list[video_num].split('/')[-1]]['length']
m_items_test = m_items.clone()

model.eval()

for k,(imgs) in enumerate(test_batch):

if k == label_length-4*(video_num+1):
video_num += 1
label_length += videos[videos_list[video_num].split('/')[-1]]['length']

imgs = Variable(imgs).cuda()

outputs, feas, updated_feas, m_items_test, softmax_score_query, softmax_score_memory, compactness_loss = model.forward(imgs[:,0:3*4], m_items_test, False)
mse_imgs = torch.mean(loss_func_mse((outputs[0]+1)/2, (imgs[0,3*4:]+1)/2)).item()
mse_feas = compactness_loss.item()

# Calculating the threshold for updating at the test time
point_sc = point_score(outputs, imgs[:,3*4:])

if point_sc < threshold:
query = F.normalize(feas, dim=1)
query = query.permute(0,2,3,1) # b X h X w X d
m_items_test = model.memory.update(query, m_items_test, False)

psnr_list[videos_list[video_num].split('/')[-1]].append(psnr(mse_imgs))
feature_distance_list[videos_list[video_num].split('/')[-1]].append(mse_feas)


# Measuring the abnormality score and the AUC
anomaly_score_total_list = []
for video in sorted(videos_new):
video_name = video.split('/')[-1]
anomaly_score_total_list += score_sum(anomaly_score_list(psnr_list[video_name]),
anomaly_score_list_inv(feature_distance_list[video_name]), args.alpha)

anomaly_score_total_list = np.asarray(anomaly_score_total_list)

accuracy = AUC(anomaly_score_total_list, np.expand_dims(1-labels_list, 0))

print('The result of ', args.dataset_type)
print('AUC: ', accuracy*100, '%')
55 changes: 55 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,55 @@
# PyTorch implementation of "Learning Memory-guided Normality for Anomaly Detection"

<p align="center"><img src="../MNAD_files/overview.png" alt="no_image" width="40%" height="40%" /><img src="../MNAD_files/teaser.png" alt="no_image" width="60%" height="60%" /></p>
This is the implementation of the paper "Learning Memory-guided Normality for Anomaly Detection (CVPR 2020)".

For more information, checkout the project site [[website](https://cvlab.yonsei.ac.kr/projects/MNAD/)] and the paper [[PDF](http://openaccess.thecvf.com/content_CVPR_2020/papers/Park_Learning_Memory-Guided_Normality_for_Anomaly_Detection_CVPR_2020_paper.pdf)].

## Dependencies
* Python 3.6
* PyTorch >= 1.0.0
* Numpy
* Sklearn

## Datasets
* USCD Ped2 [[dataset](http://www.svcl.ucsd.edu/projects/anomaly/dataset.html)]
* CUHK Avenue [[dataset](http://www.cse.cuhk.edu.hk/leojia/projects/detectabnormal/dataset.html)]
* ShanghaiTech [[dataset](https://github.com/desenzhou/ShanghaiTechDataset)]

Downlaod the datasets into ``datasets`` folder, like ``./datasets/ped2/``

## Training
```bash
git clone https://github.com/cvlab-yonsei/projects
cd projects/MNAD/code
python Train.py # for training
```
* You can freely define parameters with your own settings like
```bash
python Train.py --gpus 1 --dataset_path 'your_dataset_directory' --dataset_type avenue --exp_dir 'your_log_directory'
```

## Pre-trained model and memory items
* Download our pre-trained model and memory items <br>Link: [[model and items](https://drive.google.com/file/d/11f65puuljkUa0Z4W0VtkF_2McphS02fq/view?usp=sharing)]
* Note that, these are from training with the Ped2 dataset

## Evaluation
* Test the model with our pre-trained model and memory items
```bash
python Evaluate.py --model_dir pretrained_model.pth --m_items_dir m_items.pt
```
* Test your own model
```bash
python Evaluate.py --model_dir your_model.pth --m_items_dir your_m_items.pt
```

## Bibtex
```
@inproceedings{park2020learning,
title={Learning Memory-guided Normality for Anomaly Detection},
author={Park, Hyunjong and Noh, Jongyoun and Ham, Bumsub},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={14372--14381},
year={2020}
}
```
148 changes: 148 additions & 0 deletions Train.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,148 @@
import numpy as np
import os
import sys
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchvision
import torch.nn.init as init
import torch.utils.data as data
import torch.utils.data.dataset as dataset
import torchvision.datasets as dset
import torchvision.transforms as transforms
from torch.autograd import Variable
import torchvision.utils as v_utils
import matplotlib.pyplot as plt
import cv2
import math
from collections import OrderedDict
import copy
import time
from model.utils import DataLoader
from model.Reconstruction import *
from sklearn.metrics import roc_auc_score
from utils import *
import random

import argparse


parser = argparse.ArgumentParser(description="MNAD")
parser.add_argument('--gpus', nargs='+', type=str, help='gpus')
parser.add_argument('--batch_size', type=int, default=4, help='batch size for training')
parser.add_argument('--test_batch_size', type=int, default=1, help='batch size for test')
parser.add_argument('--epochs', type=int, default=60, help='number of epochs for training')
parser.add_argument('--loss_compact', type=float, default=0.01, help='weight of the feature compactness loss')
parser.add_argument('--loss_separate', type=float, default=0.01, help='weight of the feature separateness loss')
parser.add_argument('--h', type=int, default=256, help='height of input images')
parser.add_argument('--w', type=int, default=256, help='width of input images')
parser.add_argument('--c', type=int, default=3, help='channel of input images')
parser.add_argument('--lr', type=float, default=2e-4, help='initial learning rate')
parser.add_argument('--t_length', type=int, default=5, help='length of the frame sequences')
parser.add_argument('--fdim', type=int, default=512, help='channel dimension of the features')
parser.add_argument('--mdim', type=int, default=512, help='channel dimension of the memory items')
parser.add_argument('--msize', type=int, default=10, help='number of the memory items')
parser.add_argument('--alpha', type=float, default=0.7, help='weight for the anomality score')
parser.add_argument('--num_workers', type=int, default=2, help='number of workers for the train loader')
parser.add_argument('--num_workers_test', type=int, default=1, help='number of workers for the test loader')
parser.add_argument('--dataset_type', type=str, default='ped2', help='type of dataset: ped2, avenue, shanghai')
parser.add_argument('--dataset_path', type=str, default='./dataset/', help='directory of data')
parser.add_argument('--exp_dir', type=str, default='log', help='directory of log')

args = parser.parse_args()

os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
if args.gpus is None:
gpus = "0"
os.environ["CUDA_VISIBLE_DEVICES"]= gpus
else:
gpus = ""
for i in range(len(args.gpus)):
gpus = gpus + args.gpus[i] + ","
os.environ["CUDA_VISIBLE_DEVICES"]= gpus[:-1]

torch.backends.cudnn.enabled = True # make sure to use cudnn for computational performance

train_folder = args.dataset_path+args.dataset_type+"/training/frames"
test_folder = args.dataset_path+args.dataset_type+"/testing/frames"

# Loading dataset
train_dataset = DataLoader(train_folder, transforms.Compose([
transforms.ToTensor(),
]), resize_height=args.h, resize_width=args.w, time_step=args.t_length-1)

test_dataset = DataLoader(test_folder, transforms.Compose([
transforms.ToTensor(),
]), resize_height=args.h, resize_width=args.w, time_step=args.t_length-1)

train_size = len(train_dataset)
test_size = len(test_dataset)

train_batch = data.DataLoader(train_dataset, batch_size = args.batch_size,
shuffle=True, num_workers=args.num_workers, drop_last=True)
test_batch = data.DataLoader(test_dataset, batch_size = args.test_batch_size,
shuffle=False, num_workers=args.num_workers_test, drop_last=False)


# Model setting
model = convAE(args.c, args.t_length, args.msize, args.fdim, args.mdim)
params_encoder = list(model.encoder.parameters())
params_decoder = list(model.decoder.parameters())
params = params_encoder + params_decoder
optimizer = torch.optim.Adam(params, lr = args.lr)
scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer,T_max =args.epochs)
model.cuda()


# Report the training process
log_dir = os.path.join('./exp', args.dataset_type, args.exp_dir)
if not os.path.exists(log_dir):
os.makedirs(log_dir)
orig_stdout = sys.stdout
f = open(os.path.join(log_dir, 'log.txt'),'w')
sys.stdout= f

loss_func_mse = nn.MSELoss(reduction='none')

# Training

m_items = F.normalize(torch.rand((args.msize, args.mdim), dtype=torch.float), dim=1).cuda() # Initialize the memory items

for epoch in range(args.epochs):
labels_list = []
model.train()

start = time.time()
for j,(imgs) in enumerate(train_batch):

imgs = Variable(imgs).cuda()

outputs, _, _, m_items, softmax_score_query, softmax_score_memory, compactness_loss, separateness_loss = model.forward(imgs[:,0:12], m_items, True)


optimizer.zero_grad()
loss_pixel = torch.mean(loss_func_mse(outputs, imgs[:,12:]))
loss = loss_pixel + args.loss_compact * compactness_loss + args.loss_separate * separateness_loss
loss.backward(retain_graph=True)
optimizer.step()

scheduler.step()

print('----------------------------------------')
print('Epoch:', epoch)
print('Loss: Reconstruction {:.6f}/ Compactness {:.6f}/ Separateness {:.6f}'.format(loss_pixel.item(), compactness_loss.item(), separateness_loss.item()))
print('Memory_items:')
print(m_items)
print('----------------------------------------')

print('Training is finished')
# Save the model and the memory items
torch.save(model, os.path.join(log_dir, 'model.pth'))
torch.save(m_items, os.path.join(log_dir, 'keys.pt'))

sys.stdout = orig_stdout
f.close()



Loading

0 comments on commit 013361a

Please sign in to comment.