A lightweight, serverless-optimized AutoML library for Python. Build, evaluate, and export high-performance machine learning models with just 3 lines of code.
- 3-Line API: Designed for simplicity and speed across 5 different ML tasks.
- Serverless-First: Optimized for AWS Lambda/Azure Functions and low-memory environments.
- Premium Reports: Professional HTML/CSS reports for all tasks (No external JS or Internet required).
- Comprehensive Analytics: Supports Regression, Classification, Clustering, Anomaly Detection, and Time Series Forecasting.
- ONNX Export: One-click export for cross-platform deployment.
# Full installation (recommended)
pip install "ez-automl-lite[all]"
# Or install with specific optional dependencies:
pip install "ez-automl-lite[onnx]" # ONNX export support
pip install "ez-automl-lite[reports]" # Enhanced EDA reports
pip install "ez-automl-lite[cluster]" # DBSCAN automatic eps selection
pip install "ez-automl-lite[timeseries]" # Time series forecasting (ARIMA/Prophet)Automated training with residual analysis and error diagnostics.
from ez_automl_lite import AutoML
aml = AutoML(target="target").fit(df)
aml.report("regression_report.html")Visual Confusion Matrices and detailed class-wise performance metrics.
from ez_automl_lite import AutoML
aml = AutoML(target="label").fit(df)
aml.report("classification_report.html")Automated optimal K-search using Silhouette and Calinski-Harabasz scores. NEW: Automatic DBSCAN eps parameter selection via k-distance elbow detection.
from ez_automl_lite import AutoCluster
ac = AutoCluster(max_clusters=8).fit(df)
ac.report("clustering_report.html")Profile-based detection using Isolation Forest with detailed sample analysis.
from ez_automl_lite import AutoAnomaly
aa = AutoAnomaly(contamination=0.05).fit(df)
aa.report("anomaly_report.html")Automated forecasting with ARIMA/SARIMA and Prophet (1.2.1+), including decomposition, stationarity analysis, and 95% confidence intervals.
from ez_automl_lite import AutoTimeSeries
ats = AutoTimeSeries(
time_column="date",
target_column="sales",
forecast_horizon=30,
scaling="absmax" # Optional: 'absmax' or 'minmax'
).fit(df)
forecast = ats.predict(30)
ats.report("timeseries_report.html")Check the examples/ directory for full implementation scripts:
examples/regression_example.pyexamples/classification_example.pyexamples/clustering_example.pyexamples/anomaly_example.pyexamples/timeseries_example.pyexamples/timeseries_advanced_example.py(demonstrates scaling and holidays_mode options)
- ONNX Export: Cross-platform models in one line:
aml.export_onnx("model.onnx"). - EDA: Generate pre-training analysis:
aml.eda(df, "eda.html"). - UUIDs: Every training session generates a unique ID for easy tracking.
- Core Package Refactor
- Premium CSS-only Reports
- AutoCluster & AutoAnomaly implementation
- Cross-platform ONNX support
- PyPI Automated Release Workflow
Created by Cristopher Coronado. Distributed under the MIT License.