Skip to content

Commit

Permalink
hw8-infinity: +problems
Browse files Browse the repository at this point in the history
  • Loading branch information
hengxin committed Apr 29, 2021
1 parent 37dc61b commit 65ff7df
Show file tree
Hide file tree
Showing 4 changed files with 13 additions and 26 deletions.
Binary file not shown.
Binary file modified 2021/problem-set/hw8-infinity/hw8-infinity.pdf
Binary file not shown.
39 changes: 13 additions & 26 deletions 2021/problem-set/hw8-infinity/hw8-infinity.tex
Original file line number Diff line number Diff line change
Expand Up @@ -30,49 +30,36 @@
%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%
\begin{problem}[\score{5} $\star\star\star$]
请证明鸽笼原理。
\begin{problem}[\score{3} $\star\star\star$]
考虑由所有$0$, $1$串构成的集合 ($\set{0, 1, 111, 01010101010, 101010101, \dots}$)。
请问, 该集合是否是可数集合, 请给出理由。
\end{problem}

\begin{proof}
\end{proof}
%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%
\begin{problem}[\score{5} $\star\star\star$]
Is the set of all infinite sequences of $0$'s and $1$'s finite,
countably infinite, or uncountable?
\end{problem}
\begin{problem}[\score{4} $\star\star\star$]
考虑如下命题:

\begin{proof}
\end{proof}
%%%%%%%%%%%%%%%
``存在可数无穷多个两两不相交的非空集合, 它们的并是有穷集合。''

%%%%%%%%%%%%%%%
\begin{problem}[\score{5} $\star\star\star$]
Give an example, if possible, of
\begin{enumerate}[(a)]
\item a countably infinite collection of \blue{\it pairwise disjoint} nonempty sets whose union is finite.
\item a countably infinite collection of nonempty sets whose union is finite.
\end{enumerate}
\noindent 请问, 该命题是否正确。如果正确, 请给出例子。如果不正确, 请给出(反面的)证明。
\end{problem}

\begin{proof}
\end{proof}
%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%
\begin{problem}[\score{5} $\star\star\star\star$]
\begin{theorem}[Cantor-Schr\"{o}der–Bernstein (1887)]
\[
|X| \le |Y| \land |Y| \le |X| \implies |X| = |Y|
\]
\[
\exists\; f: X \xrightarrow{1-1} Y \land g: Y \xrightarrow{1-1} X
\implies \exists\; h: X \xleftrightarrow[\text{onto}]{1-1} Y
\]
\end{theorem}
\begin{problem}[\score{3} $\star\star\star\star$]
请自行查找并阅读 Cantor-Schr\"{o}der–Bernstein 定理的某个证明,
理解它, 放下你手头的资料~\footnote{不要偷看哦}, 然后尝试自己写出这个证明~\footnote{
是不是又偷看了 (为什么明明懂了, 但就是表达不出来?)}。

\vspace{1em}
\noindent 以下证明供参考~\footnote{pdf 版本见``\textsl{8-infinity.zip}''压缩包}:
{\href{https://en.wikipedia.org/wiki/Schr\%C3\%B6der\%E2\%80\%93Bernstein\_theorem}{\teal{\footnotesize Schr\"{o}der–Bernstein theorem @ wiki}}}
\end{problem}

Expand Down
Binary file added 2021/zip/problems/hw8-infinity.zip
Binary file not shown.

0 comments on commit 65ff7df

Please sign in to comment.