Skip to content

course-files/ServingMLModels

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

46 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Serving Machine Learning Models through REST APIs using Flask in Python

Key Value
Course Codes BBT 4206
Course Names BBT 4206: Business Intelligence II (Week 4-6 of 13)
Semester August to November 2025
Lecturer Allan Omondi
Contact aomondi@strathmore.edu
Note The lecture contains both theory and practice.
This notebook forms part of the practice.
It is intended for educational purposes only.
Recommended citation: BibTex

Repository Structure

.
├── Docker-Compose.yaml
├── Dockerfile.flask-gunicorn-app
├── Dockerfile.nginx
├── LICENSE
├── Procfile
├── README.md
├── RecommendedCitation.bib
├── api.py
├── app_server_reverse_proxy_server_setup.md
├── container-volumes
│   └── nginx
│       ├── certs
│       │   ├── selfsigned.crt
│       │   └── selfsigned.key
│       └── nginx.conf
├── frontend
│   ├── Proxies.png
│   ├── RequestFlow.png
│   ├── api_consumer.py
│   ├── api_test_DT_classifier.html
│   ├── api_test_DT_regressor.html
│   └── index.html
├── huggingface-spaces-using-gradio
│   ├── app.py
│   └── requirements.txt
├── lab_submission_instructions.md
├── model
│   ├── decisiontree_classifier_baseline.pkl
│   ├── decisiontree_regressor_optimum.pkl
│   ├── knn_classifier_optimum.pkl
│   ├── label_encoders_1b.pkl
│   ├── label_encoders_2.pkl
│   ├── label_encoders_4.pkl
│   ├── label_encoders_5.pkl
│   ├── naive_Bayes_classifier_optimum.pkl
│   ├── onehot_encoder_3.pkl
│   ├── random_forest_classifier_optimum.pkl
│   ├── scaler_4.pkl
│   ├── scaler_5.pkl
│   └── support_vector_classifier_optimum.pkl
├── publicly_serving_the_model_for_validation_by_domain_experts.md
├── requirements.txt
├── rules
├── runtime.txt
├── setup_instructions.md
└── streamlit-sharing-using-streamlit
    ├── app.py
    └── requirements.txt

9 directories, 40 files

Setup Instructions

Lab Manual

Refer to the files below for more details:

  1. api_consumer.py
  2. api.py
  3. api_test_DT_classifier.html
  4. api_test_DT_regressor.html
  5. Reverse Proxy Server and Application Server Setup
  6. Publicly Serving the Model for Validation by Domain Experts

Lab Submission Instructions

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published