Skip to content

GPT-2 Example #353

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 15 commits into from
Aug 21, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
17 changes: 17 additions & 0 deletions examples/text-generation/cortex.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,17 @@
- kind: deployment
name: text-generation

- kind: api
name: generator-124
model: s3://cortex-examples/gpt-2/124
request_handler: encoder.py

- kind: api
name: generator-355
model: s3://cortex-examples/gpt-2/355
request_handler: encoder.py

- kind: api
name: generator-774
model: s3://cortex-examples/gpt-2/774
request_handler: encoder.py
129 changes: 129 additions & 0 deletions examples/text-generation/encoder.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,129 @@
# This file includes code which was modified from https://github.com/openai/gpt-2

import tensorflow as tf
import os
import json
import regex as re
from functools import lru_cache
import requests
import boto3


@lru_cache()
def bytes_to_unicode():
bs = (
list(range(ord("!"), ord("~") + 1))
+ list(range(ord("¡"), ord("¬") + 1))
+ list(range(ord("®"), ord("ÿ") + 1))
)
cs = bs[:]
n = 0
for b in range(2 ** 8):
if b not in bs:
bs.append(b)
cs.append(2 ** 8 + n)
n += 1
cs = [chr(n) for n in cs]
return dict(zip(bs, cs))


def get_pairs(word):
pairs = set()
prev_char = word[0]
for char in word[1:]:
pairs.add((prev_char, char))
prev_char = char
return pairs


class Encoder:
def __init__(self, encoder, bpe_merges, errors="replace"):
self.encoder = encoder
self.decoder = {v: k for k, v in self.encoder.items()}
self.errors = errors
self.byte_encoder = bytes_to_unicode()
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
self.cache = {}
self.pat = re.compile(
r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+"""
)

def bpe(self, token):
if token in self.cache:
return self.cache[token]
word = tuple(token)
pairs = get_pairs(word)

if not pairs:
return token

while True:
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
if bigram not in self.bpe_ranks:
break
first, second = bigram
new_word = []
i = 0
while i < len(word):
try:
j = word.index(first, i)
new_word.extend(word[i:j])
i = j
except:
new_word.extend(word[i:])
break

if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
new_word.append(first + second)
i += 2
else:
new_word.append(word[i])
i += 1
new_word = tuple(new_word)
word = new_word
if len(word) == 1:
break
else:
pairs = get_pairs(word)
word = " ".join(word)
self.cache[token] = word
return word

def encode(self, text):
bpe_tokens = []
for token in re.findall(self.pat, text):
token = "".join(self.byte_encoder[b] for b in token.encode("utf-8"))
bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(" "))
return bpe_tokens

def decode(self, tokens):
text = "".join([self.decoder[token] for token in tokens])
text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors)
return text


def get_encoder():
s3 = boto3.client("s3")
encoder = json.load(
s3.get_object(Bucket="cortex-examples", Key="gpt-2/124M/encoder.json")["Body"]
)
bpe_data = (
s3.get_object(Bucket="cortex-examples", Key="gpt-2/124M/vocab.bpe")["Body"]
.read()
.decode("utf-8")
)
bpe_merges = [tuple(merge_str.split()) for merge_str in bpe_data.split("\n")[1:-1]]
return Encoder(encoder=encoder, bpe_merges=bpe_merges)


encoder = get_encoder()


def pre_inference(sample, metadata):
context = encoder.encode(sample["text"])
return {"context": [context]}


def post_inference(prediction, metadata):
return {encoder.decode(prediction["response"]["sample"])}
2 changes: 2 additions & 0 deletions examples/text-generation/requirements.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
requests==2.21.0
regex==2017.4.5
7 changes: 7 additions & 0 deletions examples/text-generation/samples.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,7 @@
{
"samples": [
{
"text": "Machine learning"
}
]
}