Skip to content

Input redesign update examples #162

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 4 commits into from
Jun 13, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion examples/mnist/implementations/models/dnn.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@
def create_estimator(run_config, model_config):
feature_columns = [
tf.feature_column.numeric_column(
"image_pixels", shape=model_config["hparams"]["input_shape"]
model_config["input"], shape=model_config["hparams"]["input_shape"]
)
]

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -5,10 +5,8 @@
import math


def transform_python(sample, args):
image = sample["image"]

decoded = base64.b64decode(image)
def transform_python(input):
decoded = base64.b64decode(input)
decoded_image = np.asarray(Image.open(BytesIO(decoded)), dtype=np.uint8)

# reimplmenting tf.per_image_standardization
Expand Down
6 changes: 3 additions & 3 deletions examples/mnist/resources/apis.yaml
Original file line number Diff line number Diff line change
@@ -1,17 +1,17 @@
- kind: api
name: dnn-classifier
model_name: dnn
model: @dnn
compute:
replicas: 1

- kind: api
name: conv-classifier
model_name: conv
model: @conv
compute:
replicas: 1

- kind: api
name: t2t-classifier
model_name: t2t
model: @t2t
compute:
replicas: 1
25 changes: 25 additions & 0 deletions examples/mnist/resources/data.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,25 @@
- kind: environment
name: dev
data:
type: csv
path: s3a://cortex-examples/mnist.csv
csv_config:
header: true
schema: [@image, @label]

- kind: raw_column
name: image
type: STRING_COLUMN
required: true

- kind: raw_column
name: label
type: INT_COLUMN
required: true
min: 0
max: 9

- kind: transformed_column
name: image_pixels
transformer_path: implementations/transformers/decode_and_normalize.py
input: @image
10 changes: 0 additions & 10 deletions examples/mnist/resources/environments.yaml

This file was deleted.

27 changes: 10 additions & 17 deletions examples/mnist/resources/models.yaml
Original file line number Diff line number Diff line change
@@ -1,26 +1,21 @@
- kind: model
name: dnn
path: implementations/models/dnn.py
type: classification
target_column: label
feature_columns:
- image_pixels
estimator_path: implementations/models/dnn.py
target_column: @label
input: @image_pixels
hparams:
learning_rate: 0.01
input_shape: [784]
output_shape: [10]
learning_rate: 0.01
hidden_units: [100, 200]
data_partition_ratio:
training: 0.7
evaluation: 0.3

- kind: model
name: conv
path: implementations/models/custom.py
type: classification
target_column: label
feature_columns:
- image_pixels
estimator_path: implementations/models/custom.py
target_column: @label
input: @image_pixels
hparams:
layer_type: conv
learning_rate: 0.01
Expand All @@ -38,11 +33,9 @@

- kind: model
name: t2t
path: implementations/models/t2t.py
type: classification
target_column: label
feature_columns:
- image_pixels
estimator_path: implementations/models/t2t.py
target_column: @label
input: @image_pixels
prediction_key: outputs
hparams:
input_shape: [28, 28, 1]
Expand Down
11 changes: 0 additions & 11 deletions examples/mnist/resources/raw_columns.yaml

This file was deleted.

6 changes: 0 additions & 6 deletions examples/mnist/resources/transformed_columns.yaml

This file was deleted.

22 changes: 7 additions & 15 deletions examples/movie-ratings/implementations/models/basic_embedding.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,26 +2,18 @@


def create_estimator(run_config, model_config):
user_id_index = model_config["aggregates"]["user_id_index"]
movie_id_index = model_config["aggregates"]["movie_id_index"]

feature_columns = [
tf.feature_column.embedding_column(
tf.feature_column.categorical_column_with_identity(
"user_id_indexed", len(user_id_index)
),
model_config["hparams"]["embedding_size"],
),
tf.feature_column.embedding_column(
embedding_feature_columns = []
for feature_col_data in model_config["input"]["embedding_columns"]:
embedding_col = tf.feature_column.embedding_column(
tf.feature_column.categorical_column_with_identity(
"movie_id_indexed", len(movie_id_index)
feature_col_data["col"], len(feature_col_data["vocab"]["index"])
),
model_config["hparams"]["embedding_size"],
),
]
)
embedding_feature_columns.append(embedding_col)

return tf.estimator.DNNRegressor(
feature_columns=feature_columns,
feature_columns=embedding_feature_columns,
hidden_units=model_config["hparams"]["hidden_units"],
config=run_config,
)
2 changes: 1 addition & 1 deletion examples/movie-ratings/resources/apis.yaml
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
- kind: api
name: ratings
model_name: basic_embedding
model: @basic_embedding
compute:
replicas: 1
44 changes: 44 additions & 0 deletions examples/movie-ratings/resources/data.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,44 @@
- kind: environment
name: dev
data:
type: csv
path: s3a://cortex-examples/movie-ratings.csv
csv_config:
header: true
schema: [@user_id, @movie_id, @rating, @timestamp]

- kind: raw_column
name: user_id
type: STRING_COLUMN

- kind: raw_column
name: movie_id
type: STRING_COLUMN

- kind: raw_column
name: rating
type: FLOAT_COLUMN

- kind: aggregate
name: user_id_index
aggregator: cortex.index_string
input: @user_id

- kind: transformed_column
name: user_id_indexed
transformer: cortex.index_string
input:
col: @user_id
indexes: @user_id_index

- kind: aggregate
name: movie_id_index
aggregator: cortex.index_string
input: @movie_id

- kind: transformed_column
name: movie_id_indexed
transformer: cortex.index_string
input:
col: @movie_id
indexes: @movie_id_index
20 changes: 0 additions & 20 deletions examples/movie-ratings/resources/environments.yaml

This file was deleted.

16 changes: 10 additions & 6 deletions examples/movie-ratings/resources/models.yaml
Original file line number Diff line number Diff line change
@@ -1,12 +1,16 @@
- kind: model
name: basic_embedding
type: regression
target_column: rating
feature_columns: [user_id_indexed, movie_id_indexed]
aggregates: [user_id_index, movie_id_index]
estimator_path: implementations/models/basic_embedding.py
target_column: @rating
input:
embedding_columns:
- col: @user_id_indexed
vocab: @user_id_index
- col: @movie_id_indexed
vocab: @movie_id_index
hparams:
embedding_size: 10
hidden_units: [128]
embedding_size: 20
hidden_units: [10, 10]
data_partition_ratio:
training: 0.8
evaluation: 0.2
Expand Down
31 changes: 0 additions & 31 deletions examples/movie-ratings/resources/transformed_columns.yaml

This file was deleted.

4 changes: 2 additions & 2 deletions examples/reviews/implementations/aggregators/max_length.py
Original file line number Diff line number Diff line change
@@ -1,9 +1,9 @@
def aggregate_spark(data, columns, args):
def aggregate_spark(data, input):
from pyspark.ml.feature import RegexTokenizer
import pyspark.sql.functions as F
from pyspark.sql.types import IntegerType

regexTokenizer = RegexTokenizer(inputCol=columns["col"], outputCol="token_list", pattern="\\W")
regexTokenizer = RegexTokenizer(inputCol=input, outputCol="token_list", pattern="\\W")
regexTokenized = regexTokenizer.transform(data)

max_review_length_row = (
Expand Down
6 changes: 3 additions & 3 deletions examples/reviews/implementations/aggregators/vocab.py
Original file line number Diff line number Diff line change
@@ -1,16 +1,16 @@
def aggregate_spark(data, columns, args):
def aggregate_spark(data, input):
import pyspark.sql.functions as F
from pyspark.ml.feature import RegexTokenizer

regexTokenizer = RegexTokenizer(inputCol=columns["col"], outputCol="token_list", pattern="\\W")
regexTokenizer = RegexTokenizer(inputCol=input["col"], outputCol="token_list", pattern="\\W")
regexTokenized = regexTokenizer.transform(data)

vocab_rows = (
regexTokenized.select(F.explode(F.col("token_list")).alias("word"))
.groupBy("word")
.count()
.orderBy(F.col("count").desc())
.limit(args["vocab_size"])
.limit(input["vocab_size"])
.select("word")
.collect()
)
Expand Down
2 changes: 1 addition & 1 deletion examples/reviews/implementations/models/sentiment_dnn.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@

def create_estimator(run_config, model_config):
hparams = model_config["hparams"]
vocab_size = len(model_config["aggregates"]["reviews_vocab"])
vocab_size = len(model_config["input"]["vocab"])

def model_fn(features, labels, mode, params):
embedding_input = features["embedding_input"]
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@


def create_estimator(run_config, model_config):
vocab_size = len(model_config["aggregates"]["reviews_vocab"])
vocab_size = len(model_config["input"]["vocab"])
feature_column = tf.feature_column.categorical_column_with_identity(
"embedding_input", vocab_size
)
Expand Down
4 changes: 2 additions & 2 deletions examples/reviews/implementations/models/transformer.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,7 @@ def create_estimator(run_config, model_config):
hparams = trainer_lib.create_hparams("transformer_base_single_gpu")

# SentimentIMDBCortex subclasses SentimentIMDB
problem = SentimentIMDBCortex(list(model_config["aggregates"]["reviews_vocab"]))
problem = SentimentIMDBCortex(list(model_config["input"]["vocab"]))
hparams.problem = problem
hparams.problem_hparams = problem.get_hparams(hparams)

Expand All @@ -39,7 +39,7 @@ def create_estimator(run_config, model_config):


def transform_tensorflow(features, labels, model_config):
max_length = model_config["aggregates"]["max_review_length"]
max_length = model_config["input"]["max_review_length"]

features["inputs"] = tf.expand_dims(tf.reshape(features["embedding_input"], [max_length]), -1)
features["targets"] = tf.expand_dims(tf.expand_dims(labels, -1), -1)
Expand Down
Loading