Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fixing remainder of cuda tests & fixing cblas/cublas matmul with strides [1,1] #393

Merged
merged 3 commits into from
Jan 24, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
11 changes: 5 additions & 6 deletions src/lib.rs
Original file line number Diff line number Diff line change
Expand Up @@ -185,14 +185,13 @@ pub(crate) mod tests {
}
}

impl<const M: usize> AssertClose for [f32; M] {
impl AssertClose for f32 {
fn get_far_pair(&self, rhs: &Self, tolerance: f32) -> Option<(f32, f32)> {
for (l, r) in self.iter().zip(rhs.iter()) {
if (l - r).abs() > tolerance {
return Some((*l, *r));
}
if (self - rhs).abs() > tolerance {
Some((*self, *rhs))
} else {
None
}
None
}
}

Expand Down
49 changes: 24 additions & 25 deletions src/losses.rs
Original file line number Diff line number Diff line change
Expand Up @@ -172,8 +172,7 @@ pub fn binary_cross_entropy_with_logits_loss<S: Shape, D: Device<f32>, T: Tape<D
#[cfg(test)]
mod tests {
use super::*;
use crate::tensor::*;
use crate::tests::{assert_close, TestDevice};
use crate::{tensor::*, tests::*};

#[test]
fn test_mse() {
Expand All @@ -195,7 +194,7 @@ mod tests {
let x = dev.tensor([0.87248087, -0.24252531, -1.0060949, 1.155084, 1.5545048]);
let y = dev.tensor([-0.90954804, -1.0193186, -0.39221755, 2.2524886, 1.3035554]);
let loss = mae_loss(x.trace(), y);
assert_eq!(loss.array(), 0.9042107);
assert_close(&loss.array(), &0.9042107);
let g = loss.backward();
assert_eq!(g.get(&x).array(), [0.2, 0.2, -0.2, -0.2, 0.2]);
}
Expand All @@ -212,7 +211,7 @@ mod tests {
[0.15627657, 0.29779273, 0.10897867, 0.2879545, 0.14899758],
]);
let loss = cross_entropy_with_logits_loss(x.trace(), y.clone());
assert_eq!(loss.array(), 1.9889611);
assert_close(&loss.array(), &1.9889611);
let g = loss.backward();
assert_close(
&g.get(&x).array(),
Expand Down Expand Up @@ -290,26 +289,26 @@ mod tests {
[0.7026833, 0.5563793, 0.6429267],
]);
let loss = binary_cross_entropy_with_logits_loss(logit.trace(), prob.clone());
assert_eq!(loss.array(), 0.7045728);
assert_close(&loss.array(), &0.7045728);

let g = loss.backward();

assert_eq!(
g.get(&logit).array(),
[
assert_close(
&g.get(&logit).array(),
&[
[0.003761424, -0.054871976, 0.025817735],
[-0.0009343492, 0.0051718787, 0.0074731046],
[-0.047248676, -0.03401173, 0.0071035423]
]
[-0.047248676, -0.03401173, 0.0071035423],
],
);

assert_eq!(
g.get(&prob).array(),
[
assert_close(
&g.get(&prob).array(),
&[
[0.04546672, 0.07451131, -0.10224107],
[0.18426175, -0.18865204, 0.16475087],
[0.10635218, 0.12190584, -0.097797275]
]
[0.10635218, 0.12190584, -0.097797275],
],
);
}

Expand All @@ -324,22 +323,22 @@ mod tests {

let g = loss.backward();

assert_eq!(
g.get(&logit).array(),
[
assert_close(
&g.get(&logit).array(),
&[
[0.11111111, 0.055555556, 0.0],
[0.0, -0.055555556, -0.11111111],
[0.029882379, 0.0, -0.02988238]
]
[0.029882379, 0.0, -0.02988238],
],
);

assert_eq!(
g.get(&targ).array(),
[
assert_close(
&g.get(&targ).array(),
&[
[-11.111112, -11.111112, -11.111112],
[11.111112, 11.111112, 11.111112],
[0.11111111, 0.0, -0.11111111]
]
[0.11111111, 0.0, -0.11111111],
],
);
}

Expand Down
6 changes: 3 additions & 3 deletions src/tensor_ops/log_softmax.rs
Original file line number Diff line number Diff line change
Expand Up @@ -57,9 +57,9 @@ mod tests {
let dev: TestDevice = Default::default();
let a = dev.tensor([-2.0, -1.0, 0.0, 1.0, 2.0]);
let r = a.trace().log_softmax();
assert_eq!(
r.array(),
[-4.4519143, -3.4519143, -2.4519143, -1.4519143, -0.4519143]
assert_close(
&r.array(),
&[-4.4519143, -3.4519143, -2.4519143, -1.4519143, -0.4519143],
);
let g = r.mean().backward();
assert_close(
Expand Down
2 changes: 1 addition & 1 deletion src/tensor_ops/logsumexp_to.rs
Original file line number Diff line number Diff line change
Expand Up @@ -58,7 +58,7 @@ mod tests {
let dev: TestDevice = Default::default();
let a = dev.tensor([-2.0, -1.0, 0.0, 1.0, 2.0]);
let r = a.trace().logsumexp();
assert_eq!(r.array(), 2.4519143);
assert_close(&r.array(), &2.4519143);
let g = r.backward();
assert_close(
&g.get(&a).array(),
Expand Down
34 changes: 6 additions & 28 deletions src/tensor_ops/matmul/cpu_kernel.rs
Original file line number Diff line number Diff line change
Expand Up @@ -30,40 +30,18 @@ pub(crate) fn matmul<M: Dim, K: Dim, N: Dim>(

#[cfg(feature = "cblas")]
unsafe {
let (lda, a_tr) = super::matrix_strides((m, k), a.strides);
let (ldb, b_tr) = super::matrix_strides((k, n), b.strides);
let (ldc, c_tr) = super::matrix_strides((m, n), c.strides);
let (m, n, k) = (m as libc::c_int, n as libc::c_int, k as libc::c_int);

let (lda, a_tr) = match a.strides {
[1, 0] => (m as i32, true),
[0, 1] => (k as i32, false),
[ld, 1] => (ld as i32, false),
[1, ld] => (ld as i32, true),
_ => panic!("At least one of a's strides must be 1 for cblas"),
};

let (ldb, b_tr) = match b.strides {
[1, 0] => (k as i32, true),
[0, 1] => (n as i32, false),
[ld, 1] => (ld as i32, false),
[1, ld] => (ld as i32, true),
_ => panic!("At least one of b's strides must be 1 for cblas"),
};

let (ldc, c_trans) = match c.strides {
[1, 0] => (m as i32, true),
[0, 1] => (n as i32, false),
[ld, 1] => (ld as i32, false),
[1, ld] => (ld as i32, true),
_ => panic!("At least one of c's strides must be 1 for cblas"),
};

let layout = if c_trans { ColMajor } else { RowMajor };
let (a_tr, b_tr) = if c_trans {
let layout = if c_tr { ColMajor } else { RowMajor };
let (a_tr, b_tr) = if c_tr {
(if a_tr { NoTr } else { Tr }, if b_tr { NoTr } else { Tr })
} else {
(if a_tr { Tr } else { NoTr }, if b_tr { Tr } else { NoTr })
};
sgemm(
layout, a_tr, b_tr, m, n, k, 1.0, ap, lda, bp, ldb, 1.0, cp, ldc,
layout, a_tr, b_tr, m, n, k, 1.0, ap, lda as i32, bp, ldb as i32, 1.0, cp, ldc as i32,
)
}
}
Expand Down
26 changes: 3 additions & 23 deletions src/tensor_ops/matmul/cuda_kernel.rs
Original file line number Diff line number Diff line change
Expand Up @@ -22,29 +22,9 @@ fn sgemm_config<M: Dim, K: Dim, N: Dim>(
beta: f32,
out_strides: [usize; 2],
) -> (GemmConfig<f32>, bool) {
let (lhs_stride, lhs_trans) = match lhs_strides {
[1, 0] => (m.size(), true),
[0, 1] => (k.size(), false),
[ld, 1] => (ld, false),
[1, ld] => (ld, true),
_ => panic!("At least one of a's strides must be 1 for cublas"),
};

let (rhs_stride, rhs_trans) = match rhs_strides {
[1, 0] => (k.size(), true),
[0, 1] => (n.size(), false),
[ld, 1] => (ld, false),
[1, ld] => (ld, true),
_ => panic!("At least one of b's strides must be 1 for cublas"),
};

let (out_stride, out_trans) = match out_strides {
[1, 0] => (m.size(), true),
[0, 1] => (n.size(), false),
[ld, 1] => (ld, false),
[1, ld] => (ld, true),
_ => panic!("At least one of c's strides must be 1 for cublas"),
};
let (lhs_stride, lhs_trans) = super::matrix_strides((m.size(), k.size()), lhs_strides);
let (rhs_stride, rhs_trans) = super::matrix_strides((k.size(), n.size()), rhs_strides);
let (out_stride, out_trans) = super::matrix_strides((m.size(), n.size()), out_strides);

if !out_trans {
// out is stored in row major format
Expand Down
120 changes: 120 additions & 0 deletions src/tensor_ops/matmul/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -283,6 +283,20 @@ where
}
}

/// Utility function returning the ld and whether the matrix is transposed
/// for cublas & cblas.
#[allow(unused)]
pub(super) fn matrix_strides((m, n): (usize, usize), strides: [usize; 2]) -> (usize, bool) {
match strides {
[1, 0] => (m, true),
[0, 1] => (n, false),
[1, 1] => (n, false),
[ld, 1] => (ld, false),
[1, ld] => (ld, true),
_ => panic!("At least a single stride must be 1 for cublas"),
}
}

#[cfg(test)]
mod tests {
use super::*;
Expand Down Expand Up @@ -556,4 +570,110 @@ mod tests {
);
assert_close(&g.get(&b).array(), &[-0.13630435, -1.6781758, -0.75171506]);
}

#[test]
fn test_small_matmul_vv() {
let dev: TestDevice = Default::default();
let a = dev.tensor([0.5f32]);
let b = dev.tensor([2.0f32]);
let c = a.trace().matmul(b.clone());
assert_eq!(c.array(), [[1.0]]);
let g = c.exp().sum().backward();
assert_eq!(g.get(&a).array(), [5.4365635]);
assert_eq!(g.get(&b).array(), [1.3591409]);
}

#[test]
fn test_small_matmul_vm() {
let dev: TestDevice = Default::default();

// 1 * 1x1
let a = dev.tensor([0.5f32]);
let b = dev.tensor([[2.0f32]]);
let c = a.trace().matmul(b.clone());
assert_eq!(c.array(), [1.0]);
let g = c.exp().sum().backward();
assert_eq!(g.get(&a).array(), [5.4365635]);
assert_eq!(g.get(&b).array(), [[1.3591409]]);

// 1 * 1x1 (permuted)
let c = a.trace().matmul(b.trace().permute());
assert_eq!(c.array(), [1.0]);
let g = c.exp().sum().backward();
assert_eq!(g.get(&a).array(), [5.4365635]);
assert_eq!(g.get(&b).array(), [[1.3591409]]);

// 1 * 1x2
let a = dev.tensor([0.5f32]);
let b = dev.tensor([[2.0f32, 4.0]]);
let c = a.trace().matmul(b.clone());
assert_eq!(c.array(), [1.0, 2.0]);
let g = c.exp().sum().backward();
assert_eq!(g.get(&a).array(), [34.99279]);
assert_eq!(g.get(&b).array(), [[1.3591409, 3.694528]]);

// 1 * 1x2 (permuted)
let a = dev.tensor([0.5f32]);
let b = dev.tensor([[2.0f32], [4.0]]);
let c = a.trace().matmul(b.trace().permute());
assert_eq!(c.array(), [1.0, 2.0]);
let g = c.exp().sum().backward();
assert_eq!(g.get(&a).array(), [34.99279]);
assert_eq!(g.get(&b).array(), [[1.3591409], [3.694528]]);
}

#[test]
fn test_small_matmul_mm() {
let dev: TestDevice = Default::default();

{
// 1x1 * 1x1
let a = dev.tensor([[0.5f32]]);
let b = dev.tensor([[2.0f32]]);
let c = a.trace().matmul(b.clone());
assert_eq!(c.array(), [[1.0]]);
let g = c.exp().sum().backward();
assert_eq!(g.get(&a).array(), [[5.4365635]]);
assert_eq!(g.get(&b).array(), [[1.3591409]]);
}

{
// 1x2 * 2x1
let a = dev.tensor([[0.5f32, 0.1]]);
let b = dev.tensor([[2.0f32], [4.0]]);
let c = a.trace().matmul(b.clone());
assert_eq!(c.array(), [[1.4]]);
let g = c.exp().sum().backward();
g.get(&a).array().assert_close(&[[8.1104, 16.2208]], 1e-5);
g.get(&b)
.array()
.assert_close(&[[2.0276], [0.40552002]], 1e-5);
}

{
// 1x2 (permuted) * 2x1
let a = dev.tensor([[0.5f32], [0.1]]);
let b = dev.tensor([[2.0f32], [4.0]]);
let c = a.trace().permute().matmul(b.clone());
assert_eq!(c.array(), [[1.4]]);
let g = c.exp().sum().backward();
g.get(&a).array().assert_close(&[[8.1104], [16.2208]], 1e-5);
g.get(&b)
.array()
.assert_close(&[[2.0276], [0.40552002]], 1e-5);
}

{
// 1x2 * 2x1 (permuted)
let a = dev.tensor([[0.5f32, 0.1]]);
let b = dev.tensor([[2.0f32, 4.0]]);
let c = a.trace().matmul(b.trace().permute());
assert_eq!(c.array(), [[1.4]]);
let g = c.exp().sum().backward();
g.get(&a).array().assert_close(&[[8.1104, 16.2208]], 1e-5);
g.get(&b)
.array()
.assert_close(&[[2.0276, 0.40552002]], 1e-5);
}
}
}
8 changes: 4 additions & 4 deletions src/tensor_ops/normalize.rs
Original file line number Diff line number Diff line change
Expand Up @@ -92,13 +92,13 @@ mod tests {
let dev: TestDevice = Default::default();
let a = dev.tensor([[-2.0, 0.0], [1.0, 2.0], [4.0, 5.0]]);
let r = a.trace().normalize::<Axis<0>>(1e-5);
assert_eq!(
r.array(),
[
assert_close(
&r.array(),
&[
[-1.2247438, -1.1355485],
[0.0, -0.16222118],
[1.2247438, 1.2977698],
]
],
);
let g = r.exp().mean().backward();
assert_close(
Expand Down