Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

align chapter12 contents #136

Merged
merged 2 commits into from
May 22, 2021
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Prev Previous commit
fix url
  • Loading branch information
hunhoon21 committed May 22, 2021
commit 3b0cbc38f97da25a0e0b5aa4159831023e79aa82
2 changes: 1 addition & 1 deletion chapter16/_posts/21-03-31-16_02_optimality_conditions.md
Original file line number Diff line number Diff line change
Expand Up @@ -29,7 +29,7 @@ MathJax.Hub.Config({

주어진 primal problem이 convex일때, KKT conditions는 primal & dual optimal에 대한 충분조건이 된다. 즉, $$f, h_1, \dots, h_m$$가 convex이고 $$l_1, \dots, l_r$$가 affine일때, $$x^\star, u^\star, v^\star$$가 다음의 KKT conditions를 만족한다면 $$x^\star$$와 $$(u^\star, v^\star)$$는 zero duality gap인 primal & dual optimal이다. ($$f, h_1, \dots, h_m, l_1, \dots, l_r$$는 미분 가능하다고 가정한다.) <br>

* 참고: [12-01 KKT conditions]({% post_url chapter12/21-04-02-12_KKT_conditions %})
* 참고: [12-01 KKT conditions]({% post_url chapter12/21-04-02-12_00_KKT_conditions %})

#### KKT conditions for the given primal problem
>$$
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -85,7 +85,7 @@ $$f,h_1,...h_m$$은 convex 이고 미분 가능하고, 또한 주어진 문제

여기서 $$U$$는 $$\text{diag}(u)$$를 뜻하며, $$∇h(x)$$는 $$ [ ∇h_1(x) ··· ∇h_m(x) ]$$를 의미한다.

* 자세한 내용은 [12장 KKT conditions]({% post_url chapter12/21-04-02-12_KKT_conditions %}) 참조
* 자세한 내용은 [12장 KKT conditions]({% post_url chapter12/21-04-02-12_00_KKT_conditions %}) 참조

## Central path equations
함수 $$f(x)$$를 barrier 문제로 아래와 같이 재정의 할 수 있다.<br>
Expand Down