-
Notifications
You must be signed in to change notification settings - Fork 13
Arguments Reference
Run argument are the most convinient ways to configure DEDO without diving into the APIs. All of the args are defined in dedo.utils.args
All of the runners share one set of arguments(Though not all arguments apply to all runners). Thus, this list applies to
all of the dedo examples: dedo.demo
,dedo.demo_preset
, dedo.run_rl_sb3
, dedo.run_rllib
, dedo.run_svae
. Unless
specified otherwise, arguments apply to all dedo examples.
For instance one can specify the task --env
, enable GUI --viz
, and adjust friction --deform_friction_coeff
the same way
for both training RL agent
python -m dedo.run_rl_sb3 --env=BGarment-v0 --viz --deform_friction_coeff
and playing hard coded demo trajecotry:
python -m dedo.demo_preset --env=BGarment-v0 --viz --deform_friction_coeff
--env ENV
Specify the env name
--max_episode_len MAX_EPISODE_LEN
Max steps per episode
--seed SEED
Fixed random seed
--logdir LOGDIR
Path for all output matters. Such as logs, checkpoints, and even screen captures.
Only applies to dedo.run_rl_sb3
, dedo.run_rllib
, dedo.run_svae
--load_checkpt LOAD_CHECKPT
Path to a saved model e.g. /tmp/dedo/PPO_210825_204955_HangGarment-v1
(used to re- start training or load model for play
if --play
is set)
--device DEVICE
Specifying the training device. cpu
or cuda
(see torch.device() on pytorch for more)
--rl_algo {ApexDDPG,A2C,DDPG,Impala,PPO,SAC,TD3}
Name of RL algorithm to train
--play
Load saved model from --load_checkpt_path
and perform rollout (no training)
--total_env_steps TOTAL_ENV_STEPS
Total number of env steps for training. This is applicable to dedo.run_rl_sb3
,dedo.run_rllib
, dedo.run_svae
--num_envs NUM_ENVS
Number of parallel envs.
--log_save_interval LOG_SAVE_INTERVAL
Interval (in steps) for logging and saving.
--disable_logging_video
Disables logging video to preserve storage space
--use_wandb
Enables logging to Weights and Biases (wandb.ai)
--viz
Enables GUI for real time visualization. This is applicable to dedo.run_rl_sb3
,dedo.run_rllib
, dedo.run_svae
--debug
Enables debugging information
--sim_gravity SIM_GRAVITY
Gravity constant for PyBullet simulation.
--sim_freq SIM_FREQ
PyBullet simulation frequency in hertz. Recommended value is between 300~1000
--sim_steps_per_action SIM_STEPS_PER_ACTION
Number of simulation steps per action. Indirectly specifying the control frequency in hertz.
While DEDO supports arbitrary number of anchors on the deformable object, all of our existing assets use two anchors.
Therefore we name them anchor A and anchor B. The settings below are not used if the deformable object contains deform_anchor_vertices
flag,
because the flag already specifies the ground truth vertex to grab on to
--anchor_init_pos x y z
Initial position for anchor A - Simulator will grasp on to the closest vertex on the deformable object if there was no preset of anchor vertices in deform_anchor_vertices
--other_anchor_init_pos x y z
Initial position for anchor B - Simulator will grasp on to the closest vertex on the deformable object if there was no preset of anchor vertices in deform_anchor_vertices
--override_deform_obj [PATH_TO_DEFORM]
Load custom deformable object
--deform_init_pos x, y, z
Initial pos for the center of the deform object
--deform_init_ori r, p, y
Initial orientation for deform (in Euler angles)
--deform_scale DEFORM_SCALE
Scaling for the deform object
--deform_bending_stiffness DEFORM_BENDING_STIFFNESS
deform object dynamic model's spring elastic stiffness
--deform_damping_stiffness DEFORM_DAMPING_STIFFNESS
deform object dynamic model's spring damping stiffness
--deform_elastic_stiffness DEFORM_ELASTIC_STIFFNESS
deform object dynamic model's spring elastic stiffness
--deform_friction_coeff DEFORM_FRICTION_COEFF
deform object dynamic model's friction coefficient
--disable_self_collision
Disables self collision in the deformable object (Useful in complex object to prevent spurious self interaction)
--deform_texture_file DEFORM_TEXTURE_FILE
Texture file for the deformable objects
--rigid_texture_file RIGID_TEXTURE_FILE
Texture file for the rigid objects
--plane_texture_file PLANE_TEXTURE_FILE
Texture file for the plane (floor)
--use_random_textures
Randomly selecting a texture for the rigid obj, deformable obj and floor from the texture folder
--cam_resolution CAM_RESOLUTION
RGB camera resolution in pixels (both with and height). Use 'none' to get only anchor positions as observation.
--cam_viewmat distance pitch yaw posX posY posZ
Generate the view matrix for rendering camera (not the debug camera). [distance, pitch, yaw, posX, posY, posZ]
These args are shared by dedo.run_rl_sb3
,dedo.run_rllib
, dedo.run_svae
--lr LR
Learning rate for training
--reward_strategy REWARD_STRATEGY
Which reward strategy to use
--uint8_pixels
Use CNNs for RL and uint8 in [0,255] for pixels
--flat_obs
Flat observations instead of WxHxC
--rllib_use_torch
Whether to use torch models for RLlib
--rollout_len ROLLOUT_LEN
Episode rollout length
--replay_size REPLAY_SIZE
Number of observations to store in replay buffer10K 200x200 frames take ~20GBs of CPU RAM
--unsup_algo {VAE,SVAE,PRED,DSA}
Unsupervised learner (e.g. for run_svae.py)