Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
33 changes: 26 additions & 7 deletions comfy_extras/nodes_differential_diffusion.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,19 +5,30 @@
class DifferentialDiffusion():
@classmethod
def INPUT_TYPES(s):
return {"required": {"model": ("MODEL", ),
}}
return {
"required": {
"model": ("MODEL", ),
},
"optional": {
"strength": ("FLOAT", {
"default": 1.0,
"min": 0.0,
"max": 1.0,
"step": 0.01,
}),
}
}
RETURN_TYPES = ("MODEL",)
FUNCTION = "apply"
CATEGORY = "_for_testing"
INIT = False

def apply(self, model):
def apply(self, model, strength=1.0):
model = model.clone()
model.set_model_denoise_mask_function(self.forward)
return (model,)
model.set_model_denoise_mask_function(lambda *args, **kwargs: self.forward(*args, **kwargs, strength=strength))
return (model, )

def forward(self, sigma: torch.Tensor, denoise_mask: torch.Tensor, extra_options: dict):
def forward(self, sigma: torch.Tensor, denoise_mask: torch.Tensor, extra_options: dict, strength: float):
model = extra_options["model"]
step_sigmas = extra_options["sigmas"]
sigma_to = model.inner_model.model_sampling.sigma_min
Expand All @@ -31,7 +42,15 @@ def forward(self, sigma: torch.Tensor, denoise_mask: torch.Tensor, extra_options

threshold = (current_ts - ts_to) / (ts_from - ts_to)

return (denoise_mask >= threshold).to(denoise_mask.dtype)
# Generate the binary mask based on the threshold
binary_mask = (denoise_mask >= threshold).to(denoise_mask.dtype)

# Blend binary mask with the original denoise_mask using strength
if strength and strength < 1:
blended_mask = strength * binary_mask + (1 - strength) * denoise_mask
return blended_mask
else:
return binary_mask


NODE_CLASS_MAPPINGS = {
Expand Down
Loading