Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 4 additions & 0 deletions comfy/model_base.py
Original file line number Diff line number Diff line change
Expand Up @@ -1437,6 +1437,7 @@ class HunyuanImage21Refiner(HunyuanImage21):
def concat_cond(self, **kwargs):
noise = kwargs.get("noise", None)
image = kwargs.get("concat_latent_image", None)
noise_augmentation = kwargs.get("noise_augmentation", 0.0)
device = kwargs["device"]

if image is None:
Expand All @@ -1446,6 +1447,9 @@ def concat_cond(self, **kwargs):
image = utils.common_upscale(image.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center")
image = self.process_latent_in(image)
image = utils.resize_to_batch_size(image, noise.shape[0])
if noise_augmentation > 0:
noise = torch.randn(image.shape, generator=torch.manual_seed(kwargs.get("seed", 0) - 10), dtype=image.dtype, device="cpu").to(image.device)
image = noise_augmentation * noise + (1.0 - noise_augmentation) * image
return image

def extra_conds(self, **kwargs):
Expand Down
8 changes: 4 additions & 4 deletions comfy_extras/nodes_hunyuan.py
Original file line number Diff line number Diff line change
Expand Up @@ -134,18 +134,18 @@ def INPUT_TYPES(s):
return {"required": {"positive": ("CONDITIONING", ),
"negative": ("CONDITIONING", ),
"latent": ("LATENT", ),
"noise_augmentation": ("FLOAT", {"default": 0.10, "min": 0.0, "max": 1.0, "step": 0.01}),
}}

RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT")
RETURN_NAMES = ("positive", "negative", "latent")

FUNCTION = "execute"

def execute(self, positive, negative, latent):
def execute(self, positive, negative, latent, noise_augmentation):
latent = latent["samples"]

positive = node_helpers.conditioning_set_values(positive, {"concat_latent_image": latent})
negative = node_helpers.conditioning_set_values(negative, {"concat_latent_image": latent})
positive = node_helpers.conditioning_set_values(positive, {"concat_latent_image": latent, "noise_augmentation": noise_augmentation})
negative = node_helpers.conditioning_set_values(negative, {"concat_latent_image": latent, "noise_augmentation": noise_augmentation})
out_latent = {}
out_latent["samples"] = torch.zeros([latent.shape[0], 32, latent.shape[-3], latent.shape[-2], latent.shape[-1]], device=comfy.model_management.intermediate_device())
return (positive, negative, out_latent)
Expand Down
Loading