Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
35 changes: 0 additions & 35 deletions comfy/ldm/lumina/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -377,7 +377,6 @@ def __init__(
z_image_modulation=False,
time_scale=1.0,
pad_tokens_multiple=None,
clip_text_dim=None,
image_model=None,
device=None,
dtype=None,
Expand Down Expand Up @@ -448,31 +447,6 @@ def __init__(
),
)

self.clip_text_pooled_proj = None

if clip_text_dim is not None:
self.clip_text_dim = clip_text_dim
self.clip_text_pooled_proj = nn.Sequential(
operation_settings.get("operations").RMSNorm(clip_text_dim, eps=norm_eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")),
operation_settings.get("operations").Linear(
clip_text_dim,
clip_text_dim,
bias=True,
device=operation_settings.get("device"),
dtype=operation_settings.get("dtype"),
),
)
self.time_text_embed = nn.Sequential(
nn.SiLU(),
operation_settings.get("operations").Linear(
min(dim, 1024) + clip_text_dim,
min(dim, 1024),
bias=True,
device=operation_settings.get("device"),
dtype=operation_settings.get("dtype"),
),
)

self.layers = nn.ModuleList(
[
JointTransformerBlock(
Expand Down Expand Up @@ -611,15 +585,6 @@ def _forward(self, x, timesteps, context, num_tokens, attention_mask=None, trans

cap_feats = self.cap_embedder(cap_feats) # (N, L, D) # todo check if able to batchify w.o. redundant compute

if self.clip_text_pooled_proj is not None:
pooled = kwargs.get("clip_text_pooled", None)
if pooled is not None:
pooled = self.clip_text_pooled_proj(pooled)
else:
pooled = torch.zeros((1, self.clip_text_dim), device=x.device, dtype=x.dtype)

adaln_input = self.time_text_embed(torch.cat((t, pooled), dim=-1))

patches = transformer_options.get("patches", {})
x_is_tensor = isinstance(x, torch.Tensor)
img, mask, img_size, cap_size, freqs_cis = self.patchify_and_embed(x, cap_feats, cap_mask, t, num_tokens, transformer_options=transformer_options)
Expand Down
54 changes: 54 additions & 0 deletions comfy/ldm/newbie/components.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,54 @@
import warnings

import torch
import torch.nn as nn

try:
from apex.normalization import FusedRMSNorm as RMSNorm
except ImportError:
warnings.warn("Cannot import apex RMSNorm, switch to vanilla implementation")

class RMSNorm(torch.nn.Module):
def __init__(self, dim: int, eps: float = 1e-6):
"""
Initialize the RMSNorm normalization layer.

Args:
dim (int): The dimension of the input tensor.
eps (float, optional): A small value added to the denominator for numerical stability. Default is 1e-6.

Attributes:
eps (float): A small value added to the denominator for numerical stability.
weight (nn.Parameter): Learnable scaling parameter.

"""
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim))

def _norm(self, x):
"""
Apply the RMSNorm normalization to the input tensor.

Args:
x (torch.Tensor): The input tensor.

Returns:
torch.Tensor: The normalized tensor.

"""
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)

def forward(self, x):
"""
Forward pass through the RMSNorm layer.

Args:
x (torch.Tensor): The input tensor.

Returns:
torch.Tensor: The output tensor after applying RMSNorm.

"""
output = self._norm(x.float()).type_as(x)
return output * self.weight
195 changes: 195 additions & 0 deletions comfy/ldm/newbie/model.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,195 @@
from __future__ import annotations
from typing import Optional, Any, Dict
import torch
import torch.nn as nn
import comfy.ldm.common_dit as common_dit
from comfy.ldm.lumina.model import NextDiT as NextDiTBase
from .components import RMSNorm

#######################################################
# Adds support for NewBie image #
#######################################################

def _fallback_operations():
try:
import comfy.ops
return comfy.ops.disable_weight_init
except Exception:
return None

def _pop_unexpected_kwargs(kwargs: Dict[str, Any]) -> None:
for k in (
"model_type",
"operation_settings",
"unet_dtype",
"weight_dtype",
"precision",
"extra_model_config",
):
kwargs.pop(k, None)

class NewBieNextDiT_CLIP(NextDiTBase):

def __init__(
self,
*args,
clip_text_dim: int = 1024,
clip_img_dim: int = 1024,
device=None,
dtype=None,
operations=None,
**kwargs,
):
_pop_unexpected_kwargs(kwargs)
if operations is None:
operations = _fallback_operations()
super().__init__(*args, device=device, dtype=dtype, operations=operations, **kwargs)
self._nb_device = device
self._nb_dtype = dtype
self._nb_ops = operations
min_mod = min(int(getattr(self, "dim", 1024)), 1024)
if operations is not None and hasattr(operations, "Linear"):
Linear = operations.Linear
Norm = getattr(operations, "RMSNorm", None)
else:
Linear = nn.Linear
Norm = None
if Norm is not None:
self.clip_text_pooled_proj = nn.Sequential(
Norm(clip_text_dim, eps=1e-5, elementwise_affine=True, device=device, dtype=dtype),
Linear(clip_text_dim, clip_text_dim, bias=True, device=device, dtype=dtype),
)
else:
self.clip_text_pooled_proj = nn.Sequential(
RMSNorm(clip_text_dim),
nn.Linear(clip_text_dim, clip_text_dim, bias=True),
)
nn.init.normal_(self.clip_text_pooled_proj[1].weight, std=0.01)
nn.init.zeros_(self.clip_text_pooled_proj[1].bias)
self.time_text_embed = nn.Sequential(
nn.SiLU(),
Linear(min_mod + clip_text_dim, min_mod, bias=True, device=device, dtype=dtype),
)
nn.init.zeros_(self.time_text_embed[1].weight)
nn.init.zeros_(self.time_text_embed[1].bias)
if Norm is not None:
self.clip_img_pooled_embedder = nn.Sequential(
Norm(clip_img_dim, eps=1e-5, elementwise_affine=True, device=device, dtype=dtype),
Linear(clip_img_dim, min_mod, bias=True, device=device, dtype=dtype),
)
else:
self.clip_img_pooled_embedder = nn.Sequential(
RMSNorm(clip_img_dim),
nn.Linear(clip_img_dim, min_mod, bias=True),
)
nn.init.normal_(self.clip_img_pooled_embedder[1].weight, std=0.01)
nn.init.zeros_(self.clip_img_pooled_embedder[1].bias)

@staticmethod
def _get_clip_from_kwargs(transformer_options: dict, kwargs: dict, key: str):
if key in kwargs:
return kwargs.get(key)
if transformer_options is not None and key in transformer_options:
return transformer_options.get(key)
extra = transformer_options.get("extra_cond", None) if transformer_options else None
if isinstance(extra, dict) and key in extra:
return extra.get(key)
return None
def _forward(
self,
x: torch.Tensor,
timesteps: torch.Tensor,
context: torch.Tensor,
num_tokens: int,
attention_mask: Optional[torch.Tensor] = None,
transformer_options: dict = {},
**kwargs,
):
t = timesteps
cap_feats = context
cap_mask = attention_mask
bs, c, h, w = x.shape
x = common_dit.pad_to_patch_size(x, (self.patch_size, self.patch_size))
t_emb = self.t_embedder(t, dtype=x.dtype)
adaln_input = t_emb
clip_text_pooled = self._get_clip_from_kwargs(transformer_options, kwargs, "clip_text_pooled")
clip_img_pooled = self._get_clip_from_kwargs(transformer_options, kwargs, "clip_img_pooled")
if clip_text_pooled is not None:
if clip_text_pooled.dim() > 2:
clip_text_pooled = clip_text_pooled.view(clip_text_pooled.shape[0], -1)
clip_text_pooled = clip_text_pooled.to(device=t_emb.device, dtype=t_emb.dtype)
clip_emb = self.clip_text_pooled_proj(clip_text_pooled)
adaln_input = self.time_text_embed(torch.cat([t_emb, clip_emb], dim=-1))
if clip_img_pooled is not None:
if clip_img_pooled.dim() > 2:
clip_img_pooled = clip_img_pooled.view(clip_img_pooled.shape[0], -1)
clip_img_pooled = clip_img_pooled.to(device=t_emb.device, dtype=t_emb.dtype)
adaln_input = adaln_input + self.clip_img_pooled_embedder(clip_img_pooled)
if isinstance(cap_feats, torch.Tensor):
try:
target_dtype = next(self.cap_embedder.parameters()).dtype
except StopIteration:
target_dtype = cap_feats.dtype
cap_feats = cap_feats.to(device=t_emb.device, dtype=target_dtype)
cap_feats = self.cap_embedder(cap_feats)
patches = transformer_options.get("patches", {})
x_is_tensor = True
img, mask, img_size, cap_size, freqs_cis = self.patchify_and_embed(
x, cap_feats, cap_mask, adaln_input, num_tokens, transformer_options=transformer_options
)
freqs_cis = freqs_cis.to(img.device)
for i, layer in enumerate(self.layers):
img = layer(img, mask, freqs_cis, adaln_input, transformer_options=transformer_options)
if "double_block" in patches:
for p in patches["double_block"]:
out = p(
{
"img": img[:, cap_size[0] :],
"txt": img[:, : cap_size[0]],
"pe": freqs_cis[:, cap_size[0] :],
"vec": adaln_input,
"x": x,
"block_index": i,
"transformer_options": transformer_options,
}
)
if isinstance(out, dict):
if "img" in out:
img[:, cap_size[0] :] = out["img"]
if "txt" in out:
img[:, : cap_size[0]] = out["txt"]

img = self.final_layer(img, adaln_input)
img = self.unpatchify(img, img_size, cap_size, return_tensor=x_is_tensor)
img = img[:, :, :h, :w]
return img

def NextDiT_3B_GQA_patch2_Adaln_Refiner_WHIT_CLIP(**kwargs):
_pop_unexpected_kwargs(kwargs)
kwargs.setdefault("patch_size", 2)
kwargs.setdefault("in_channels", 16)
kwargs.setdefault("dim", 2304)
kwargs.setdefault("n_layers", 36)
kwargs.setdefault("n_heads", 24)
kwargs.setdefault("n_kv_heads", 8)
kwargs.setdefault("axes_dims", [32, 32, 32])
kwargs.setdefault("axes_lens", [1024, 512, 512])
return NewBieNextDiT_CLIP(**kwargs)

def NewBieNextDiT(*, device=None, dtype=None, operations=None, **kwargs):
_pop_unexpected_kwargs(kwargs)
if operations is None:
operations = _fallback_operations()
if dtype is None:
dev_str = str(device) if device is not None else ""
if dev_str.startswith("cuda") and torch.cuda.is_available():
if hasattr(torch.cuda, "is_bf16_supported") and torch.cuda.is_bf16_supported():
dtype = torch.bfloat16
else:
dtype = torch.float16
else:
dtype = torch.float32
model = NextDiT_3B_GQA_patch2_Adaln_Refiner_WHIT_CLIP(
device=device, dtype=dtype, operations=operations, **kwargs
)
return model
Loading