Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
22 changes: 11 additions & 11 deletions comfy/ldm/lightricks/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -291,17 +291,17 @@ def __init__(self, dim, n_heads, d_head, context_dim=None, attn_precision=None,
def forward(self, x, context=None, attention_mask=None, timestep=None, pe=None, transformer_options={}):
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (self.scale_shift_table[None, None].to(device=x.device, dtype=x.dtype) + timestep.reshape(x.shape[0], timestep.shape[1], self.scale_shift_table.shape[0], -1)).unbind(dim=2)

norm_x = comfy.ldm.common_dit.rms_norm(x)
attn1_input = torch.addcmul(norm_x, norm_x, scale_msa).add_(shift_msa)
attn1_result = self.attn1(attn1_input, pe=pe, transformer_options=transformer_options)
x.addcmul_(attn1_result, gate_msa)
attn1_input = comfy.ldm.common_dit.rms_norm(x)
attn1_input = torch.addcmul(attn1_input, attn1_input, scale_msa).add_(shift_msa)
attn1_input = self.attn1(attn1_input, pe=pe, transformer_options=transformer_options)
x.addcmul_(attn1_input, gate_msa)
del attn1_input

x += self.attn2(x, context=context, mask=attention_mask, transformer_options=transformer_options)

norm_x = comfy.ldm.common_dit.rms_norm(x)
y = torch.addcmul(norm_x, norm_x, scale_mlp).add_(shift_mlp)
ff_result = self.ff(y)
x.addcmul_(ff_result, gate_mlp)
y = comfy.ldm.common_dit.rms_norm(x)
y = torch.addcmul(y, y, scale_mlp).add_(shift_mlp)
x.addcmul_(self.ff(y), gate_mlp)

return x

Expand Down Expand Up @@ -336,16 +336,16 @@ def precompute_freqs_cis(indices_grid, dim, out_dtype, theta=10000.0, max_pos=[2
sin_vals = torch.cat([torch.zeros_like(sin_vals[:, :, :padding_size]), sin_vals], dim=-1)

# Reshape and extract one value per pair (since repeat_interleave duplicates each value)
cos_vals = cos_vals.reshape(*cos_vals.shape[:2], -1, 2)[..., 0] # [B, N, dim//2]
sin_vals = sin_vals.reshape(*sin_vals.shape[:2], -1, 2)[..., 0] # [B, N, dim//2]
cos_vals = cos_vals.reshape(*cos_vals.shape[:2], -1, 2)[..., 0].to(out_dtype) # [B, N, dim//2]
sin_vals = sin_vals.reshape(*sin_vals.shape[:2], -1, 2)[..., 0].to(out_dtype) # [B, N, dim//2]

# Build rotation matrix [[cos, -sin], [sin, cos]] and add heads dimension
freqs_cis = torch.stack([
torch.stack([cos_vals, -sin_vals], dim=-1),
torch.stack([sin_vals, cos_vals], dim=-1)
], dim=-2).unsqueeze(1) # [B, 1, N, dim//2, 2, 2]

return freqs_cis.to(out_dtype)
return freqs_cis


class LTXVModel(torch.nn.Module):
Expand Down
2 changes: 1 addition & 1 deletion comfy/ldm/qwen_image/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -415,7 +415,7 @@ def _forward(
txt_start = round(max(((x.shape[-1] + (self.patch_size // 2)) // self.patch_size) // 2, ((x.shape[-2] + (self.patch_size // 2)) // self.patch_size) // 2))
txt_ids = torch.arange(txt_start, txt_start + context.shape[1], device=x.device).reshape(1, -1, 1).repeat(x.shape[0], 1, 3)
ids = torch.cat((txt_ids, img_ids), dim=1)
image_rotary_emb = self.pe_embedder(ids).to(torch.float32).contiguous()
image_rotary_emb = self.pe_embedder(ids).to(x.dtype).contiguous()
del ids, txt_ids, img_ids

hidden_states = self.img_in(hidden_states)
Expand Down