Skip to content

Added next_permutation algorithm #405

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 6 commits into from
Oct 10, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 3 additions & 1 deletion pydatastructs/linear_data_structures/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -36,6 +36,8 @@
is_ordered,
upper_bound,
lower_bound,
longest_increasing_subsequence
longest_increasing_subsequence,
next_permutation,
prev_permutation
)
__all__.extend(algorithms.__all__)
164 changes: 163 additions & 1 deletion pydatastructs/linear_data_structures/algorithms.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,9 @@
'is_ordered',
'upper_bound',
'lower_bound',
'longest_increasing_subsequence'
'longest_increasing_subsequence',
'next_permutation',
'prev_permutation'
]

def _merge(array, sl, el, sr, er, end, comp):
Expand Down Expand Up @@ -1038,3 +1040,163 @@ def longest_increasing_subsequence(array):
ans[:0] = [array[last_index]]
last_index = parent[last_index]
return ans

def _permutation_util(array, start, end, comp, perm_comp):
size = end - start + 1
permute = OneDimensionalArray(int, size)
for i, j in zip(range(start, end + 1), range(size)):
permute[j] = array[i]
i = size - 1
while i > 0 and perm_comp(permute[i - 1], permute[i], comp):
i -= 1
if i > 0:
left, right = i, size - 1
while left <= right:
mid = left + (right - left) // 2
if not perm_comp(permute[i - 1], permute[mid], comp):
left = mid + 1
else:
right = mid - 1
permute[i - 1], permute[left - 1] = \
permute[left - 1], permute[i - 1]
left, right = i, size - 1
while left < right:
permute[left], permute[right] = permute[right], permute[left]
left += 1
right -= 1
result = True if i > 0 else False
return result, permute

def next_permutation(array, **kwargs):
"""
If the function can determine the next higher permutation, it
returns `True` and the permutation in a new array.
If that is not possible, because it is already at the largest possible
permutation, it returns the elements according to the first permutation
and returns `False` and the permutation in a new array.

Parameters
==========

array: OneDimensionalArray
The array which is to be used for finding next permutation.
start: int
The staring index of the considered portion of the array.
Optional, by default 0
end: int, optional
The ending index of the considered portion of the array.
Optional, by default the index of the last position filled.
comp: lambda/function
The comparator which is to be used for specifying the
desired lexicographical ordering.
Optional, by default, less than is
used for comparing two values.


Returns
=======

output: bool, OneDimensionalArray
First element is `True` if the function can rearrange
the given portion of the input array as a lexicographically
greater permutation, otherwise returns `False`.
Second element is an array having the next permutation.


Examples
========

>>> from pydatastructs import next_permutation, OneDimensionalArray as ODA
>>> array = ODA(int, [1, 2, 3, 4])
>>> is_greater, next_permute = next_permutation(array)
>>> is_greater, str(next_permute)
(True, '[1, 2, 4, 3]')
>>> array = ODA(int, [3, 2, 1])
>>> is_greater, next_permute = next_permutation(array)
>>> is_greater, str(next_permute)
(False, '[1, 2, 3]')

References
==========

.. [1] http://www.cplusplus.com/reference/algorithm/next_permutation/
"""
start = kwargs.get('start', 0)
end = kwargs.get('end', len(array) - 1)
comp = kwargs.get('comp', lambda x, y: x < y)

def _next_permutation_comp(x, y, _comp):
if _comp(x, y):
return False
else:
return True

return _permutation_util(array, start, end, comp,
_next_permutation_comp)

def prev_permutation(array, **kwargs):
"""
If the function can determine the next lower permutation, it
returns `True` and the permutation in a new array.
If that is not possible, because it is already at the lowest possible
permutation, it returns the elements according to the last permutation
and returns `False` and the permutation in a new array.

Parameters
==========

array: OneDimensionalArray
The array which is to be used for finding next permutation.
start: int
The staring index of the considered portion of the array.
Optional, by default 0
end: int, optional
The ending index of the considered portion of the array.
Optional, by default the index of the last position filled.
comp: lambda/function
The comparator which is to be used for specifying the
desired lexicographical ordering.
Optional, by default, less than is
used for comparing two values.


Returns
=======

output: bool, OneDimensionalArray
First element is `True` if the function can rearrange
the given portion of the input array as a lexicographically
smaller permutation, otherwise returns `False`.
Second element is an array having the previous permutation.


Examples
========

>>> from pydatastructs import prev_permutation, OneDimensionalArray as ODA
>>> array = ODA(int, [1, 2, 4, 3])
>>> is_lower, prev_permute = prev_permutation(array)
>>> is_lower, str(prev_permute)
(True, '[1, 2, 3, 4]')
>>> array = ODA(int, [1, 2, 3, 4])
>>> is_lower, prev_permute = prev_permutation(array)
>>> is_lower, str(prev_permute)
(False, '[4, 3, 2, 1]')

References
==========

.. [1] http://www.cplusplus.com/reference/algorithm/prev_permutation/
"""
start = kwargs.get('start', 0)
end = kwargs.get('end', len(array) - 1)
comp = kwargs.get('comp', lambda x, y: x < y)

def _prev_permutation_comp(x, y, _comp):
if _comp(x, y):
return True
else:
return False

return _permutation_util(array, start, end, comp,
_prev_permutation_comp)
51 changes: 50 additions & 1 deletion pydatastructs/linear_data_structures/tests/test_algorithms.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,8 @@
OneDimensionalArray, brick_sort, brick_sort_parallel,
heapsort, matrix_multiply_parallel, counting_sort, bucket_sort,
cocktail_shaker_sort, quick_sort, longest_common_subsequence, is_ordered,
upper_bound, lower_bound, longest_increasing_subsequence)
upper_bound, lower_bound, longest_increasing_subsequence, next_permutation,
prev_permutation)


from pydatastructs.utils.raises_util import raises
Expand Down Expand Up @@ -271,3 +272,51 @@ def test_longest_increasing_subsequence():
output = longest_increasing_subsequence(arr5)
expected_result = [3]
assert expected_result == output

def _test_permutation_common(array, expected_perms, func):
num_perms = len(expected_perms)

output = []
for _ in range(num_perms):
signal, array = func(array)
output.append(array)
if not signal:
break

assert len(output) == len(expected_perms)
for perm1, perm2 in zip(output, expected_perms):
assert str(perm1) == str(perm2)

def test_next_permutation():
ODA = OneDimensionalArray

array = ODA(int, [1, 2, 3])
expected_perms = [[1, 3, 2], [2, 1, 3],
[2, 3, 1], [3, 1, 2],
[3, 2, 1], [1, 2, 3]]
_test_permutation_common(array, expected_perms, next_permutation)

def test_prev_permutation():
ODA = OneDimensionalArray

array = ODA(int, [3, 2, 1])
expected_perms = [[3, 1, 2], [2, 3, 1],
[2, 1, 3], [1, 3, 2],
[1, 2, 3], [3, 2, 1]]
_test_permutation_common(array, expected_perms, prev_permutation)

def test_next_prev_permutation():
ODA = OneDimensionalArray
random.seed(1000)

for i in range(100):
data = set(random.sample(range(1, 10000), 10))
array = ODA(int, list(data))

_, next_array = next_permutation(array)
_, orig_array = prev_permutation(next_array)
assert str(orig_array) == str(array)

_, prev_array = prev_permutation(array)
_, orig_array = next_permutation(prev_array)
assert str(orig_array) == str(array)