Skip to content

[WIP] Added base class SelfBalancingTree for Red Black Tree #176

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 4 commits into from
Mar 19, 2020
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
110 changes: 63 additions & 47 deletions pydatastructs/trees/binary_trees.py
Original file line number Diff line number Diff line change
Expand Up @@ -552,29 +552,10 @@ def lowest_common_ancestor(self, j, k, algorithm=1):
"""
return getattr(self, "_lca_"+str(algorithm))(j, k)

class AVLTree(BinarySearchTree):
class SelfBalancingBinaryTree(BinarySearchTree):
"""
Represents AVL trees.

References
==========

.. [1] https://courses.cs.washington.edu/courses/cse373/06sp/handouts/lecture12.pdf
.. [2] https://en.wikipedia.org/wiki/AVL_tree
.. [3] http://faculty.cs.niu.edu/~freedman/340/340notes/340avl2.htm

See Also
========

pydatastructs.trees.binary_trees.BinaryTree
Represents Base class for all rotation based balancing trees like AVL tree, Red Black tree, Splay Tree.
"""
left_height = lambda self, node: self.tree[node.left].height \
if node.left is not None else -1
right_height = lambda self, node: self.tree[node.right].height \
if node.right is not None else -1
balance_factor = lambda self, node: self.right_height(node) - \
self.left_height(node)

def _right_rotate(self, j, k):
y = self.tree[k].right
if y is not None:
Expand All @@ -585,14 +566,6 @@ def _right_rotate(self, j, k):
self.tree[self.tree[k].parent].left = k
self.tree[j].parent = k
self.tree[k].right = j
self.tree[j].height = max(self.left_height(self.tree[j]),
self.right_height(self.tree[j])) + 1
kp = self.tree[k].parent
if kp is None:
self.root_idx = k
if self.is_order_statistic:
self.tree[j].size = (self.left_size(self.tree[j]) +
self.right_size(self.tree[j]) + 1)

def _left_right_rotate(self, j, k):
i = self.tree[k].right
Expand All @@ -605,10 +578,6 @@ def _left_right_rotate(self, j, k):
self.tree[i].left, self.tree[i].right, self.tree[i].parent = \
k, j, self.tree[j].parent
self.tree[k].parent, self.tree[j].parent = i, i
self.tree[j].height = max(self.left_height(self.tree[j]),
self.right_height(self.tree[j])) + 1
self.tree[k].height = max(self.left_height(self.tree[k]),
self.right_height(self.tree[k])) + 1
ip = self.tree[i].parent
if ip is not None:
if self.tree[ip].left == j:
Expand All @@ -617,11 +586,6 @@ def _left_right_rotate(self, j, k):
self.tree[ip].right = i
else:
self.root_idx = i
if self.is_order_statistic:
self.tree[j].size = (self.left_size(self.tree[j]) +
self.right_size(self.tree[j]) + 1)
self.tree[k].size = (self.left_size(self.tree[k]) +
self.right_size(self.tree[k]) + 1)

def _right_left_rotate(self, j, k):
i = self.tree[k].left
Expand All @@ -634,10 +598,6 @@ def _right_left_rotate(self, j, k):
self.tree[i].right, self.tree[i].left, self.tree[i].parent = \
k, j, self.tree[j].parent
self.tree[k].parent, self.tree[j].parent = i, i
self.tree[j].height = max(self.left_height(self.tree[j]),
self.right_height(self.tree[j])) + 1
self.tree[k].height = max(self.left_height(self.tree[k]),
self.right_height(self.tree[k])) + 1
ip = self.tree[i].parent
if ip is not None:
if self.tree[ip].left == j:
Expand All @@ -646,11 +606,6 @@ def _right_left_rotate(self, j, k):
self.tree[ip].right = i
else:
self.root_idx = i
if self.is_order_statistic:
self.tree[j].size = (self.left_size(self.tree[j]) +
self.right_size(self.tree[j]) + 1)
self.tree[k].size = (self.left_size(self.tree[k]) +
self.right_size(self.tree[k]) + 1)

def _left_rotate(self, j, k):
y = self.tree[k].left
Expand All @@ -662,6 +617,67 @@ def _left_rotate(self, j, k):
self.tree[self.tree[k].parent].right = k
self.tree[j].parent = k
self.tree[k].left = j

class AVLTree(SelfBalancingBinaryTree):
"""
Represents AVL trees.

References
==========

.. [1] https://courses.cs.washington.edu/courses/cse373/06sp/handouts/lecture12.pdf
.. [2] https://en.wikipedia.org/wiki/AVL_tree
.. [3] http://faculty.cs.niu.edu/~freedman/340/340notes/340avl2.htm

See Also
========

pydatastructs.trees.binary_trees.BinaryTree
"""
left_height = lambda self, node: self.tree[node.left].height \
if node.left is not None else -1
right_height = lambda self, node: self.tree[node.right].height \
if node.right is not None else -1
balance_factor = lambda self, node: self.right_height(node) - \
self.left_height(node)

def _right_rotate(self, j, k):
super(AVLTree, self)._right_rotate(j, k)
self.tree[j].height = max(self.left_height(self.tree[j]),
self.right_height(self.tree[j])) + 1
kp = self.tree[k].parent
if kp is None:
self.root_idx = k
if self.is_order_statistic:
self.tree[j].size = (self.left_size(self.tree[j]) +
self.right_size(self.tree[j]) + 1)

def _left_right_rotate(self, j, k):
super(AVLTree, self)._left_right_rotate(j, k)
self.tree[j].height = max(self.left_height(self.tree[j]),
self.right_height(self.tree[j])) + 1
self.tree[k].height = max(self.left_height(self.tree[k]),
self.right_height(self.tree[k])) + 1
if self.is_order_statistic:
self.tree[j].size = (self.left_size(self.tree[j]) +
self.right_size(self.tree[j]) + 1)
self.tree[k].size = (self.left_size(self.tree[k]) +
self.right_size(self.tree[k]) + 1)

def _right_left_rotate(self, j, k):
super(AVLTree, self)._right_left_rotate(j, k)
self.tree[j].height = max(self.left_height(self.tree[j]),
self.right_height(self.tree[j])) + 1
self.tree[k].height = max(self.left_height(self.tree[k]),
self.right_height(self.tree[k])) + 1
if self.is_order_statistic:
self.tree[j].size = (self.left_size(self.tree[j]) +
self.right_size(self.tree[j]) + 1)
self.tree[k].size = (self.left_size(self.tree[k]) +
self.right_size(self.tree[k]) + 1)

def _left_rotate(self, j, k):
super(AVLTree, self)._left_rotate(j, k)
self.tree[j].height = max(self.left_height(self.tree[j]),
self.right_height(self.tree[j])) + 1
self.tree[k].height = max(self.left_height(self.tree[k]),
Expand Down