Skip to content

Added sequential Kurskal Algorithm #168

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 4 commits into from
Mar 17, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion .travis.yml
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@ sudo: false
language: python

python:
- "3.5"
- "3.6"
install:
- pip install -r requirements.txt

Expand Down
3 changes: 2 additions & 1 deletion pydatastructs/graphs/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,8 @@
from . import algorithms
from .algorithms import (
breadth_first_search,
breadth_first_search_parallel
breadth_first_search_parallel,
minimum_spanning_tree
)

__all__.extend(algorithms.__all__)
14 changes: 13 additions & 1 deletion pydatastructs/graphs/adjacency_list.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,6 @@
from pydatastructs.graphs.graph import Graph
from pydatastructs.linear_data_structures import DynamicOneDimensionalArray
from pydatastructs.utils.misc_util import GraphEdge

__all__ = [
'AdjacencyList'
Expand All @@ -19,6 +20,7 @@ def __new__(cls, *vertices):
for vertex in vertices:
obj.__setattr__(vertex.name, vertex)
obj.vertices = set([vertex.name for vertex in vertices])
obj.edge_weights = dict()
return obj

def is_adjacent(self, node1, node2):
Expand All @@ -42,14 +44,24 @@ def remove_vertex(self, name):
delattr(node_obj, name)
node_obj.adjacent.remove(name)

def add_edge(self, source, target):
def add_edge(self, source, target, cost=None):
source, target = self.__getattribute__(source), \
self.__getattribute__(target)
source.__setattr__(target.name, target)
source.adjacent.add(target.name)
if cost is not None:
self.edge_weights[source.name + "_" + target.name] = \
GraphEdge(source, target, cost)

def get_edge(self, source, target):
return self.edge_weights.get(
source + "_" + target,
None)

def remove_edge(self, source, target):
source, target = self.__getattribute__(source), \
self.__getattribute__(target)
source.adjacent.remove(target.name)
delattr(source, target.name)
self.edge_weights.pop(source.name + "_" + target.name,
None)
26 changes: 19 additions & 7 deletions pydatastructs/graphs/adjacency_matrix.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
from pydatastructs.graphs.graph import Graph
from pydatastructs.linear_data_structures import OneDimensionalArray
from pydatastructs.utils.misc_util import AdjacencyMatrixGraphNode
from pydatastructs.utils.misc_util import AdjacencyMatrixGraphNode, GraphEdge

__all__ = [
'AdjacencyMatrix'
Expand All @@ -18,11 +18,9 @@ class AdjacencyMatrix(Graph):
def __new__(cls, *vertices):
obj = object.__new__(cls)
num_vertices = len(vertices)
obj.vertices = OneDimensionalArray(
AdjacencyMatrixGraphNode,
num_vertices)
obj.vertices = [vertex.name for vertex in vertices]
for vertex in vertices:
obj.vertices[vertex.name] = vertex
obj.__setattr__(str(vertex.name), vertex)
obj.matrix = OneDimensionalArray(
OneDimensionalArray,
num_vertices)
Expand All @@ -31,6 +29,7 @@ def __new__(cls, *vertices):
bool,
num_vertices)
obj.matrix[i].fill(False)
obj.edge_weights = dict()
return obj

def is_adjacent(self, node1, node2):
Expand All @@ -40,7 +39,8 @@ def neighbors(self, node):
neighbors = []
for i in range(self.matrix[node]._size):
if self.matrix[node][i]:
neighbors.append(self.vertices[i])
neighbors.append(self.__getattribute__(
str(self.vertices[i])))
return neighbors

def add_vertex(self, node):
Expand All @@ -51,8 +51,20 @@ def remove_vertex(self, node):
raise NotImplementedError("Currently we allow "
"adjacency matrix for static graphs only.")

def add_edge(self, source, target):
def add_edge(self, source, target, cost=None):
self.matrix[source][target] = True
source, target = str(source), str(target)
if cost is not None:
self.edge_weights[source + "_" + target] = \
GraphEdge(self.__getattribute__(source),
self.__getattribute__(target),
cost)

def get_edge(self, source, target):
return self.edge_weights.get(
str(source) + "_" + str(target),
None)

def remove_edge(self, source, target):
self.matrix[source][target] = False
self.edge_weights.pop(str(source) + "_" + str(target), None)
87 changes: 85 additions & 2 deletions pydatastructs/graphs/algorithms.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,12 +3,15 @@
data structure.
"""
from collections import deque as Queue
from pydatastructs.utils.misc_util import AdjacencyListGraphNode
from concurrent.futures import ThreadPoolExecutor
from pydatastructs.utils import GraphEdge
from pydatastructs.miscellaneous_data_structures import DisjointSetForest
from pydatastructs.graphs.graph import Graph

__all__ = [
'breadth_first_search',
'breadth_first_search_parallel'
'breadth_first_search_parallel',
'minimum_spanning_tree'
]

def breadth_first_search(
Expand Down Expand Up @@ -186,3 +189,83 @@ def _breadth_first_search_parallel_adjacency_list(
return None

_breadth_first_search_parallel_adjacency_matrix = _breadth_first_search_parallel_adjacency_list

def _minimum_spanning_tree_kruskal_adjacency_list(graph):
mst = Graph(*[getattr(graph, v) for v in graph.vertices])
sort_key = lambda item: item[1].value
dsf = DisjointSetForest()
for v in graph.vertices:
dsf.make_set(v)
for _, edge in sorted(graph.edge_weights.items(), key=sort_key):
u, v = edge.source.name, edge.target.name
if dsf.find_root(u) is not dsf.find_root(v):
mst.add_edge(u, v, edge.value)
dsf.union(u, v)
return mst

def _minimum_spanning_tree_kruskal_adjacency_matrix(graph):
mst = Graph(*[getattr(graph, str(v)) for v in graph.vertices])
sort_key = lambda item: item[1].value
dsf = DisjointSetForest()
for v in graph.vertices:
dsf.make_set(v)
for _, edge in sorted(graph.edge_weights.items(), key=sort_key):
u, v = edge.source.name, edge.target.name
if dsf.find_root(u) is not dsf.find_root(v):
mst.add_edge(u, v, edge.value)
dsf.union(u, v)
return mst

def minimum_spanning_tree(graph, algorithm):
"""
Computes a minimum spanning tree for the given
graph and algorithm.

Parameters
==========

graph: Graph
The graph whose minimum spanning tree
has to be computed.
algorithm: str
The algorithm which should be used for
computing a minimum spanning tree.
Currently the following algorithms are
supported,
'kruskal' -> Kruskal's algorithm as given in
[1].

Returns
=======

mst: Graph
A minimum spanning tree using the implementation
same as the graph provided in the input.

Examples
========

>>> from pydatastructs import Graph, AdjacencyListGraphNode
>>> from pydatastructs import minimum_spanning_tree
>>> u = AdjacencyListGraphNode('u')
>>> v = AdjacencyListGraphNode('v')
>>> G = Graph(u, v)
>>> G.add_edge(u.name, v.name, 3)
>>> mst = minimum_spanning_tree(G, 'kruskal')
>>> u_n = mst.neighbors(u.name)
>>> mst.get_edge(u.name, u_n[0].name).value
3

References
==========

.. [1] https://en.wikipedia.org/wiki/Kruskal%27s_algorithm
"""
import pydatastructs.graphs.algorithms as algorithms
func = "_minimum_spanning_tree_" + algorithm + "_" + graph._impl
if not hasattr(algorithms, func):
raise NotImplementedError(
"Currently %s algoithm for %s implementation of graphs "
"isn't implemented for finding minimum spanning trees."
%(algorithm, graph._impl))
return getattr(algorithms, func)(graph)
11 changes: 10 additions & 1 deletion pydatastructs/graphs/graph.py
Original file line number Diff line number Diff line change
Expand Up @@ -96,7 +96,7 @@ def remove_vertex(self, node):
raise NotImplementedError(
"This is an abstract method.")

def add_edge(self, source, target):
def add_edge(self, source, target, cost=None):
"""
Adds the edge starting at first parameter
i.e., source and ending at the second
Expand All @@ -105,6 +105,15 @@ def add_edge(self, source, target):
raise NotImplementedError(
"This is an abstract method.")

def get_edge(self, source, target):
"""
Returns GraphEdge object if there
is an edge between source and target
otherwise None.
"""
raise NotImplementedError(
"This is an abstract method.")

def remove_edge(self, source, target):
"""
Removes the edge starting at first parameter
Expand Down
12 changes: 9 additions & 3 deletions pydatastructs/graphs/tests/test_adjacency_list.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,12 +21,18 @@ def test_adjacency_list():
assert neighbors == [v_2]
v = AdjacencyListGraphNode('v', 4)
g.add_vertex(v)
g.add_edge('v_1', 'v')
g.add_edge('v_2', 'v')
g.add_edge('v_3', 'v')
g.add_edge('v_1', 'v', 0)
g.add_edge('v_2', 'v', 0)
g.add_edge('v_3', 'v', 0)
assert g.is_adjacent('v_1', 'v') is True
assert g.is_adjacent('v_2', 'v') is True
assert g.is_adjacent('v_3', 'v') is True
e1 = g.get_edge('v_1', 'v')
e2 = g.get_edge('v_2', 'v')
e3 = g.get_edge('v_3', 'v')
assert (e1.source.name, e1.target.name) == ('v_1', 'v')
assert (e2.source.name, e2.target.name) == ('v_2', 'v')
assert (e3.source.name, e3.target.name) == ('v_3', 'v')
g.remove_edge('v_1', 'v')
assert g.is_adjacent('v_1', 'v') is False
g.remove_vertex('v')
Expand Down
14 changes: 10 additions & 4 deletions pydatastructs/graphs/tests/test_adjacency_matrix.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,10 +5,16 @@ def test_AdjacencyMatrix():
v_0 = AdjacencyMatrixGraphNode(0, 0)
v_1 = AdjacencyMatrixGraphNode(1, 1)
v_2 = AdjacencyMatrixGraphNode(2, 2)
g = Graph(v_0, v_1, v_2, implementation='adjacency_matrix')
g.add_edge(0, 1)
g.add_edge(1, 2)
g.add_edge(2, 0)
g = Graph(v_0, v_1, v_2)
g.add_edge(0, 1, 0)
g.add_edge(1, 2, 0)
g.add_edge(2, 0, 0)
e1 = g.get_edge(0, 1)
e2 = g.get_edge(1, 2)
e3 = g.get_edge(2, 0)
assert (e1.source.name, e1.target.name) == (0, 1)
assert (e2.source.name, e2.target.name) == (1, 2)
assert (e3.source.name, e3.target.name) == (2, 0)
assert g.is_adjacent(0, 1) is True
assert g.is_adjacent(1, 2) is True
assert g.is_adjacent(2, 0) is True
Expand Down
47 changes: 37 additions & 10 deletions pydatastructs/graphs/tests/test_algorithms.py
Original file line number Diff line number Diff line change
@@ -1,18 +1,18 @@
from pydatastructs import (breadth_first_search, Graph,
breadth_first_search_parallel)
breadth_first_search_parallel, minimum_spanning_tree)


def test_breadth_first_search():

def _test_breadth_first_search(ds, impl):
def _test_breadth_first_search(ds):
import pydatastructs.utils.misc_util as utils
GraphNode = getattr(utils, "Adjacency" + ds + "GraphNode")

V1 = GraphNode(0)
V2 = GraphNode(1)
V3 = GraphNode(2)

G1 = Graph(V1, V2, V3, implementation=impl)
G1 = Graph(V1, V2, V3)

edges = [
(V1.name, V2.name),
Expand Down Expand Up @@ -47,7 +47,7 @@ def bfs_tree(curr_node, next_node, parent):
(V7.name, V8.name)
]

G2 = Graph(V4, V5, V6, V7, V8, implementation=impl)
G2 = Graph(V4, V5, V6, V7, V8)

for edge in edges:
G2.add_edge(*edge)
Expand All @@ -71,12 +71,12 @@ def path_finder(curr_node, next_node, dest_node, parent, path):
breadth_first_search(G2, V4.name, path_finder, V7.name, parent, path)
assert path == [V4.name, V5.name, V6.name, V7.name]

_test_breadth_first_search("List", "adjacency_list")
_test_breadth_first_search("Matrix", "adjacency_matrix")
_test_breadth_first_search("List")
_test_breadth_first_search("Matrix")

def test_breadth_first_search_parallel():

def _test_breadth_first_search_parallel(ds, impl):
def _test_breadth_first_search_parallel(ds):
import pydatastructs.utils.misc_util as utils
GraphNode = getattr(utils, "Adjacency" + ds + "GraphNode")

Expand All @@ -90,7 +90,7 @@ def _test_breadth_first_search_parallel(ds, impl):
V8 = GraphNode(7)


G1 = Graph(V1, V2, V3, V4, V5, V6, V7, V8, implementation=impl)
G1 = Graph(V1, V2, V3, V4, V5, V6, V7, V8)

edges = [
(V1.name, V2.name),
Expand Down Expand Up @@ -119,5 +119,32 @@ def bfs_tree(curr_node, next_node, parent):
(parent[V6.name] in (V2.name, V3.name)) and
(parent[V7.name] in (V3.name, V4.name)) and (parent[V8.name] == V4.name))

_test_breadth_first_search_parallel("List", "adjacency_list")
_test_breadth_first_search_parallel("Matrix", "adjacency_matrix")
_test_breadth_first_search_parallel("List")
_test_breadth_first_search_parallel("Matrix")

def test_minimum_spanning_tree():

def _test_minimum_spanning_tree(ds, algorithm):
import pydatastructs.utils.misc_util as utils
GraphNode = getattr(utils, "Adjacency" + ds + "GraphNode")
a, b, c, d, e = [GraphNode(x) for x in [0, 1, 2, 3, 4]]
graph = Graph(a, b, c, d, e)
graph.add_edge(a.name, c.name, 10)
graph.add_edge(c.name, a.name, 10)
graph.add_edge(a.name, d.name, 7)
graph.add_edge(d.name, a.name, 7)
graph.add_edge(c.name, d.name, 9)
graph.add_edge(d.name, c.name, 9)
graph.add_edge(d.name, b.name, 32)
graph.add_edge(b.name, d.name, 32)
graph.add_edge(d.name, e.name, 23)
graph.add_edge(e.name, d.name, 23)
mst = minimum_spanning_tree(graph, algorithm=algorithm)
expected_mst = [('0_3', 7), ('2_3', 9), ('3_4', 23), ('3_1', 32),
('3_0', 7), ('3_2', 9), ('4_3', 23), ('1_3', 32)]
assert len(expected_mst) == 2*len(mst.edge_weights.items())
for k, v in mst.edge_weights.items():
assert (k, v.value) in expected_mst

_test_minimum_spanning_tree("List", "kruskal")
_test_minimum_spanning_tree("Matrix", "kruskal")