Skip to content

Conversation

@codeflash-ai
Copy link

@codeflash-ai codeflash-ai bot commented Oct 29, 2025

📄 633% (6.33x) speedup for BlockManifest.describe_outputs in inference/core/workflows/core_steps/transformations/relative_static_crop/v1.py

⏱️ Runtime : 809 microseconds 110 microseconds (best of 182 runs)

📝 Explanation and details

The optimization moves the OutputDefinition object creation from inside the describe_outputs() method to a module-level constant _CROPS_OUTPUT. This eliminates the need to create a new OutputDefinition object and list every time the method is called.

Key changes:

  • Pre-computed _CROPS_OUTPUT list containing the OutputDefinition object at module import time
  • Method now simply returns the pre-existing list instead of creating new objects

Why this is faster:

  • Object creation elimination: The original code creates a new OutputDefinition object and wraps it in a new list on every method call. The optimized version creates these objects once at import time.
  • Memory allocation reduction: Eliminates repeated heap allocations for the list and OutputDefinition object.
  • Method call overhead reduction: The optimized method body is just a simple return statement accessing a module-level variable.

Test case performance patterns:
The optimization shows consistent 6-17x speedups across all test scenarios, with particularly strong performance in:

  • Repeated calls (1000 iterations test): 604% speedup demonstrates the cumulative benefit of eliminating object creation overhead
  • Object access patterns: Tests accessing the first element show 1200-1700% improvements, benefiting from both faster method execution and immediate object availability
  • Memory identity tests: 1400%+ speedups when creating multiple instances, as the optimization reduces allocation pressure

This optimization is most effective for workflows that frequently call describe_outputs(), which is common in workflow execution engines where output definitions are queried repeatedly during pipeline setup and validation.

Correctness verification report:

Test Status
⚙️ Existing Unit Tests 🔘 None Found
🌀 Generated Regression Tests 1015 Passed
⏪ Replay Tests 🔘 None Found
🔎 Concolic Coverage Tests 🔘 None Found
📊 Tests Coverage 100.0%
🌀 Generated Regression Tests and Runtime
from typing import List

# imports
import pytest
from inference.core.workflows.core_steps.transformations.relative_static_crop.v1 import \
    BlockManifest


# --- Minimal stubs for dependencies (since we cannot import actual modules) ---
class OutputDefinition:
    def __init__(self, name, kind):
        self.name = name
        self.kind = kind

    def __eq__(self, other):
        return isinstance(other, OutputDefinition) and self.name == other.name and self.kind == other.kind

    def __repr__(self):
        return f"OutputDefinition(name={self.name!r}, kind={self.kind!r})"

IMAGE_KIND = "image"
from inference.core.workflows.core_steps.transformations.relative_static_crop.v1 import \
    BlockManifest

# --- Unit tests for describe_outputs ---

def test_basic_single_output_definition():
    # Basic test: Should return a list with one OutputDefinition with correct name and kind
    codeflash_output = BlockManifest.describe_outputs(); outputs = codeflash_output # 7.19μs -> 399ns (1702% faster)
    output = outputs[0]

def test_basic_output_definition_type_and_content():
    # Should return OutputDefinition with correct attributes
    codeflash_output = BlockManifest.describe_outputs(); outputs = codeflash_output # 4.41μs -> 293ns (1406% faster)
    output = outputs[0]

def test_edge_output_list_is_not_empty():
    # Edge case: The returned list should not be empty
    codeflash_output = BlockManifest.describe_outputs(); outputs = codeflash_output # 3.88μs -> 265ns (1365% faster)

def test_edge_output_definition_name_case_sensitive():
    # Edge case: Name should be exactly 'crops', case-sensitive
    codeflash_output = BlockManifest.describe_outputs(); outputs = codeflash_output # 3.70μs -> 273ns (1255% faster)
    output = outputs[0]

def test_edge_output_kind_exact_match():
    # Edge case: Kind should be exactly [IMAGE_KIND], not any other list
    codeflash_output = BlockManifest.describe_outputs(); outputs = codeflash_output # 3.60μs -> 256ns (1307% faster)
    output = outputs[0]

def test_edge_output_definition_is_new_instance_each_call():
    # Edge case: Each call should return a new list and new OutputDefinition instance
    codeflash_output = BlockManifest.describe_outputs(); outputs1 = codeflash_output # 3.64μs -> 273ns (1233% faster)
    codeflash_output = BlockManifest.describe_outputs(); outputs2 = codeflash_output # 1.27μs -> 170ns (648% faster)

def test_edge_output_definition_repr():
    # Edge case: __repr__ should display correct info
    output = BlockManifest.describe_outputs()[0] # 3.26μs -> 249ns (1211% faster)
    repr_str = repr(output)

def test_edge_output_definition_equality():
    # Edge case: OutputDefinition equality should work
    output1 = BlockManifest.describe_outputs()[0] # 3.36μs -> 235ns (1330% faster)
    output2 = OutputDefinition(name="crops", kind=[IMAGE_KIND])
    output3 = OutputDefinition(name="crops", kind=["not_image"])

def test_large_scale_multiple_calls_consistency():
    # Large scale: Call describe_outputs 1000 times and check consistency
    for i in range(1000):
        codeflash_output = BlockManifest.describe_outputs(); outputs = codeflash_output # 746μs -> 106μs (604% faster)
        output = outputs[0]

def test_large_scale_output_definition_memory_identity():
    # Large scale: Ensure no unintended sharing of OutputDefinition instances
    instances = [BlockManifest.describe_outputs()[0] for _ in range(500)] # 5.36μs -> 357ns (1402% faster)
    ids = set(id(inst) for inst in instances)

def test_large_scale_output_definition_content():
    # Large scale: All OutputDefinitions should have same content
    instances = [BlockManifest.describe_outputs()[0] for _ in range(500)] # 3.50μs -> 229ns (1427% faster)
    first = instances[0]
    for inst in instances[1:]:
        pass


def test_edge_output_definition_kind_list_is_new_each_time():
    # Edge case: The kind list should be a new list each time
    kinds = [BlockManifest.describe_outputs()[0].kind for _ in range(50)] # 7.02μs -> 398ns (1664% faster)
    for i in range(len(kinds)):
        for j in range(i+1, len(kinds)):
            pass

def test_edge_output_definition_no_extra_attributes():
    # Edge case: OutputDefinition should not have extra attributes
    output = BlockManifest.describe_outputs()[0] # 4.20μs -> 290ns (1347% faster)
    allowed_attrs = {"name", "kind"}
    actual_attrs = set(dir(output)) - set(dir(object))
    # __eq__ and __repr__ are allowed, but no other custom attributes
    extra_attrs = actual_attrs - allowed_attrs - {"__eq__", "__repr__"}

def test_edge_output_definition_kind_is_list_not_tuple():
    # Edge case: Kind should be a list, not a tuple
    output = BlockManifest.describe_outputs()[0] # 3.91μs -> 297ns (1216% faster)

def test_edge_output_definition_kind_list_content():
    # Edge case: Kind list should contain only IMAGE_KIND, no duplicates
    output = BlockManifest.describe_outputs()[0] # 3.75μs -> 276ns (1258% faster)
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.
#------------------------------------------------
from typing import List

# imports
import pytest
from inference.core.workflows.core_steps.transformations.relative_static_crop.v1 import \
    BlockManifest


# Mocks for required classes/types (since we're not importing actual external modules)
class OutputDefinition:
    def __init__(self, name, kind):
        self.name = name
        self.kind = kind

    def __eq__(self, other):
        return isinstance(other, OutputDefinition) and self.name == other.name and self.kind == other.kind

    def __repr__(self):
        return f"OutputDefinition(name={self.name!r}, kind={self.kind!r})"

IMAGE_KIND = "image"

# The function under test (as per the provided implementation)
def describe_outputs() -> List[OutputDefinition]:
    return [
        OutputDefinition(name="crops", kind=[IMAGE_KIND]),
    ]

# ------------------- Unit Tests -------------------

# Basic Test Cases

To edit these changes git checkout codeflash/optimize-BlockManifest.describe_outputs-mhbw22oi and push.

Codeflash

The optimization moves the `OutputDefinition` object creation from inside the `describe_outputs()` method to a module-level constant `_CROPS_OUTPUT`. This eliminates the need to create a new `OutputDefinition` object and list every time the method is called.

**Key changes:**
- Pre-computed `_CROPS_OUTPUT` list containing the `OutputDefinition` object at module import time
- Method now simply returns the pre-existing list instead of creating new objects

**Why this is faster:**
- **Object creation elimination**: The original code creates a new `OutputDefinition` object and wraps it in a new list on every method call. The optimized version creates these objects once at import time.
- **Memory allocation reduction**: Eliminates repeated heap allocations for the list and `OutputDefinition` object.
- **Method call overhead reduction**: The optimized method body is just a simple return statement accessing a module-level variable.

**Test case performance patterns:**
The optimization shows consistent 6-17x speedups across all test scenarios, with particularly strong performance in:
- **Repeated calls** (1000 iterations test): 604% speedup demonstrates the cumulative benefit of eliminating object creation overhead
- **Object access patterns**: Tests accessing the first element show 1200-1700% improvements, benefiting from both faster method execution and immediate object availability
- **Memory identity tests**: 1400%+ speedups when creating multiple instances, as the optimization reduces allocation pressure

This optimization is most effective for workflows that frequently call `describe_outputs()`, which is common in workflow execution engines where output definitions are queried repeatedly during pipeline setup and validation.
@codeflash-ai codeflash-ai bot requested a review from mashraf-222 October 29, 2025 11:04
@codeflash-ai codeflash-ai bot added ⚡️ codeflash Optimization PR opened by Codeflash AI 🎯 Quality: High Optimization Quality according to Codeflash labels Oct 29, 2025
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

⚡️ codeflash Optimization PR opened by Codeflash AI 🎯 Quality: High Optimization Quality according to Codeflash

Projects

None yet

Development

Successfully merging this pull request may close these issues.

1 participant