Skip to content

⚡️ Speed up function parse_log_sympy by 24% #49

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 1 commit into
base: main
Choose a base branch
from

Conversation

codeflash-ai[bot]
Copy link

@codeflash-ai codeflash-ai bot commented Mar 31, 2025

📄 24% (0.24x) speedup for parse_log_sympy in evaluation/benchmarks/testgeneval/log_parsers.py

⏱️ Runtime : 1.74 millisecond 1.40 millisecond (best of 556 runs)

📝 Explanation and details

Key Optimizations.

  1. Using re.finditer(): This avoids creating a large list of all matches at once, as it returns an iterator which is more memory efficient, especially beneficial for large logs.
  2. Cache Frequent Attribute Access: Access TestStatus attributes once and cache them, which avoids repeated attribute lookup and saves time.
  3. Direct String Slicing: By using line[:line.rfind(' ')], redundant str.split() operations are avoided when capturing the test case name, making line parsing slightly faster.
  4. Using splitlines(): This directly iterates over lines without creating an intermediate list unlike split('\n').

Correctness verification report:

Test Status
⚙️ Existing Unit Tests 🔘 None Found
🌀 Generated Regression Tests 22 Passed
⏪ Replay Tests 🔘 None Found
🔎 Concolic Coverage Tests 1 Passed
📊 Tests Coverage 100.0%
🌀 Generated Regression Tests Details
import re
from unittest.mock import MagicMock

# imports
import pytest  # used for our unit tests
from evaluation.benchmarks.testgeneval.constants import TestStatus
from evaluation.benchmarks.testgeneval.log_parsers import parse_log_sympy

# Mock TestStatus for testing
TestStatus = MagicMock()
TestStatus.FAILED.value = "FAILED"
TestStatus.ERROR.value = "ERROR"
TestStatus.PASSED.value = "PASSED"

# unit tests
def test_single_test_case_pass():
    log = "test_example.py:10 ok"
    expected = {"test_example.py:10": "PASSED"}
    codeflash_output = parse_log_sympy(log)

def test_single_test_case_fail():
    log = "test_example.py:10 F"
    expected = {"test_example.py:10": "FAILED"}
    codeflash_output = parse_log_sympy(log)

def test_single_test_case_error():
    log = "test_example.py:10 E"
    expected = {"test_example.py:10": "ERROR"}
    codeflash_output = parse_log_sympy(log)

def test_multiple_test_cases():
    log = """
    test_first.py:10 ok
    test_second.py:20 F
    test_third.py:30 E
    """
    expected = {
        "test_first.py:10": "PASSED",
        "test_second.py:20": "FAILED",
        "test_third.py:30": "ERROR"
    }
    codeflash_output = parse_log_sympy(log)

def test_empty_log():
    log = ""
    expected = {}
    codeflash_output = parse_log_sympy(log)

def test_whitespace_log():
    log = "   \n  "
    expected = {}
    codeflash_output = parse_log_sympy(log)

def test_no_test_cases():
    log = "Some random log content\nAnother line\n"
    expected = {}
    codeflash_output = parse_log_sympy(log)

def test_malformed_log_entries():
    log = "test_example.py:10 [FAIL]\nmalformed entry\n"
    expected = {"test_example.py:10": "FAILED"}
    codeflash_output = parse_log_sympy(log)

def test_large_log():
    log = "\n".join(f"test_case_{i}.py:10 ok" for i in range(1000))
    expected = {f"test_case_{i}.py:10": "PASSED" for i in range(1000)}
    codeflash_output = parse_log_sympy(log)

def test_duplicate_test_cases():
    log = """
    test_example.py:10 F
    test_example.py:10 ok
    """
    expected = {"test_example.py:10": "PASSED"}
    codeflash_output = parse_log_sympy(log)

def test_special_characters_in_test_names():
    log = "test_example_special@!.py:10 ok"
    expected = {"test_example_special@!.py:10": "PASSED"}
    codeflash_output = parse_log_sympy(log)

def test_different_line_endings():
    log = "test_example.py:10 ok\r\ntest_another.py:20 F\r\n"
    expected = {
        "test_example.py:10": "PASSED",
        "test_another.py:20": "FAILED"
    }
    codeflash_output = parse_log_sympy(log)



import re  # used for regex operations
from enum import Enum  # used to simulate TestStatus enum

# imports
import pytest  # used for our unit tests
from evaluation.benchmarks.testgeneval.log_parsers import parse_log_sympy


# Mocking the TestStatus Enum for testing purposes
class TestStatus(Enum):
    PASSED = 'passed'
    FAILED = 'failed'
    ERROR = 'error'
from evaluation.benchmarks.testgeneval.log_parsers import parse_log_sympy

# unit tests

def test_single_test_case_pass():
    """Test a single passing test case"""
    log = "test_example.py:23 ok"
    expected = {"test_example.py:23": TestStatus.PASSED.value}
    codeflash_output = parse_log_sympy(log)

def test_single_test_case_fail():
    """Test a single failing test case"""
    log = "test_example.py:23 F"
    expected = {"test_example.py:23": TestStatus.FAILED.value}
    codeflash_output = parse_log_sympy(log)

def test_single_test_case_error():
    """Test a single erroring test case"""
    log = "test_example.py:23 E"
    expected = {"test_example.py:23": TestStatus.ERROR.value}
    codeflash_output = parse_log_sympy(log)

def test_multiple_test_cases():
    """Test multiple test cases with mixed results"""
    log = """
    test_example1.py:23 ok
    test_example2.py:45 F
    test_example3.py:67 E
    """
    expected = {
        "test_example1.py:23": TestStatus.PASSED.value,
        "test_example2.py:45": TestStatus.FAILED.value,
        "test_example3.py:67": TestStatus.ERROR.value,
    }
    codeflash_output = parse_log_sympy(log)

def test_empty_log():
    """Test an empty log string"""
    log = ""
    expected = {}
    codeflash_output = parse_log_sympy(log)

def test_malformed_log_entries():
    """Test log with malformed entries"""
    log = "random text not matching pattern"
    expected = {}
    codeflash_output = parse_log_sympy(log)

def test_special_characters_in_test_names():
    """Test log with special characters in test names"""
    log = "test_example_special_@#$.py:23 ok"
    expected = {"test_example_special_@#$.py:23": TestStatus.PASSED.value}
    codeflash_output = parse_log_sympy(log)

def test_duplicate_test_cases():
    """Test log with duplicate test cases"""
    log = """
    test_example.py:23 ok
    test_example.py:23 F
    """
    expected = {"test_example.py:23": TestStatus.FAILED.value}
    codeflash_output = parse_log_sympy(log)

def test_large_scale_log():
    """Test a log with a large number of test cases"""
    log = "\n".join([f"test_{i}.py:23 ok" for i in range(1000)])
    expected = {f"test_{i}.py:23": TestStatus.PASSED.value for i in range(1000)}
    codeflash_output = parse_log_sympy(log)

def test_log_with_noise():
    """Test log with unrelated system messages"""
    log = """
    Starting tests...
    test_example.py:23 ok
    System message: All systems operational
    test_example2.py:45 F
    """
    expected = {
        "test_example.py:23": TestStatus.PASSED.value,
        "test_example2.py:45": TestStatus.FAILED.value,
    }
    codeflash_output = parse_log_sympy(log)
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

from evaluation.benchmarks.testgeneval.log_parsers import parse_log_sympy

def test_parse_log_sympy():
    parse_log_sympy('')

To edit these changes git checkout codeflash/optimize-parse_log_sympy-m8wzbkpy and push.

Codeflash

### Key Optimizations.
1. **Using `re.finditer()`**: This avoids creating a large list of all matches at once, as it returns an iterator which is more memory efficient, especially beneficial for large logs.
2. **Cache Frequent Attribute Access**: Access `TestStatus` attributes once and cache them, which avoids repeated attribute lookup and saves time.
3. **Direct String Slicing**: By using `line[:line.rfind(' ')]`, redundant `str.split()` operations are avoided when capturing the test case name, making line parsing slightly faster.
4. **Using `splitlines()`**: This directly iterates over lines without creating an intermediate list unlike `split('\n')`.
@codeflash-ai codeflash-ai bot added the ⚡️ codeflash Optimization PR opened by Codeflash AI label Mar 31, 2025
@codeflash-ai codeflash-ai bot requested a review from dasarchan March 31, 2025 11:22
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
⚡️ codeflash Optimization PR opened by Codeflash AI
Projects
None yet
Development

Successfully merging this pull request may close these issues.

1 participant