Skip to content

How to make a triangular plot with different data sets, starting with a data set that contains fewer cosmological parameters in the sample? #116

Closed
@JaelssonLima

Description

@JaelssonLima

If I do the plot

roots_data=[IDEM2_sample5, IDEM2_sample2, IDEM2_sample3, IDEM2_sample4,IDEM2_sample1]

works, but I do:

roots_data=[IDEM2_sample1, IDEM2_sample2, IDEM2_sample3, IDEM2_sample4,IDEM2_sample5]

It doesn't work, how to solve it?

The IDEM2_sample1, IDEM2_sample2 strings have fewer parameters in the sample than the other data.

Att. Jaelsson

 #IDEM2 PLOTS / JSL 

import getdist as gd
from getdist import loadMCSamples
from getdist import plots
from getdist.types import ResultTable
import matplotlib.pyplot as plt

# Configuração da fonte
font = {'family': 'serif', 'serif': ['Times New Roman']}
plt.rc('font', **font)
plt.rc('text', usetex=True)


# Load the Monte Carlo samples
root='/home/jaelsson/Documents/montepython_public_jsl/chains/artigo_jsl/idem2_cov'
IDEM2_sample1 = gd.loadMCSamples(root+'/Pantheon+cc+bao1_idem2/2024-03-17_200000_', settings={'ignore_rows': 0})
IDEM2_sample2 = gd.loadMCSamples(root+'/Pantheon+H0+cc+bao1_idem2/2024-02-15_100000_', settings={'ignore_rows': 0})
IDEM2_sample3 = gd.loadMCSamples(root+'/planck2018TTTEEE+lensing_idem2_cov2/2024-04-19_300000_', settings={'ignore_rows': 0})
IDEM2_sample4 = gd.loadMCSamples(root+'/planck2018TTTEEE+lensing+Pantheon+cc+BAO_idem2_cov/2024-04-19_300000_', settings={'ignore_rows': 0})
IDEM2_sample5 = gd.loadMCSamples(root+'/planck2018TTTEEE+lensing+Pantheon+H0+cc+BAO_idem2_cov/2024-04-19_300000_', settings={'ignore_rows': 0})


#params
################################
#omega_b = Omega_b * (h**2)
#h=H0/100.0  # h = H0 / (100 km/s/Mpc)
Omega_b=0.05 # fixo
################################

#1
p1=IDEM2_sample1.getParams()
gamma_lam=p1.gamma_lam
H0=p1.H0
Omega_m=p1.Omega_m 
M=p1.M
omega_b=(p1.H0/100.0)**2*Omega_b
omega_cdm=(p1.H0/100.0)**2*p1.Omega_cdm
IDEM2_sample1.addDerived(gamma_lam, name='gamma' , label=r'\gamma')
IDEM2_sample1.addDerived(H0, name='H_0' , label=r'H_0')
IDEM2_sample1.addDerived(Omega_m, name='Omega_{m0}' , label=r'\Omega_{m0}')
IDEM2_sample1.addDerived(M, name='{M}' , label=r'M')
IDEM2_sample1.addDerived(omega_b, name='omega_{b}' , label=r'\omega_{b}')
IDEM2_sample1.addDerived(omega_cdm, name='omega_{cdm}' , label=r'\omega_{c}')


#2
p2=IDEM2_sample2.getParams()
gamma_lam=p2.gamma_lam
H0=p2.H0
Omega_m=p2.Omega_m 
M=p2.M
omega_b=(p2.H0/100.0)**2*Omega_b
omega_cdm=(p2.H0/100.0)**2*p2.Omega_cdm
IDEM2_sample2.addDerived(gamma_lam, name='gamma' , label=r'\gamma')
IDEM2_sample2.addDerived(H0, name='H_0' , label=r'H_0')
IDEM2_sample2.addDerived(Omega_m, name='Omega_{m0}' , label=r'\Omega_{m0}')
IDEM2_sample2.addDerived(M, name='{M}' , label=r'M')
IDEM2_sample2.addDerived(omega_b, name='omega_{b}' , label=r'\omega_{b}')
IDEM2_sample2.addDerived(omega_cdm, name='omega_{cdm}' , label=r'\omega_{c}')



#3
p3=IDEM2_sample3.getParams()
gamma_lam=p3.gamma_lam
H0=p3.H0
Omega_m=p3.Omega_m 
#M=p3.M
#omega_b=(p3.H0/100.0)**2*Omega_b
omega_b=p3.omega_b/100.0
omega_cdm=p3.omega_cdm
#A_s=p3.A_s
#n_s=p3.n_s
sigma8=p3.sigma8
tau_reio=p3.tau_reio
IDEM2_sample3.addDerived(gamma_lam, name='gamma' , label=r'\gamma')
IDEM2_sample3.addDerived(H0, name='H_0' , label=r'H_0')
IDEM2_sample3.addDerived(Omega_m, name='Omega_{m0}' , label=r'\Omega_{m0}')
#IDEM2_sample3.addDerived(M, name='{M}' , label=r'M')
IDEM2_sample3.addDerived(omega_b, name='omega_{b}' , label=r'\omega_{b}')
IDEM2_sample3.addDerived(omega_cdm, name='omega_{cdm}' , label=r'\omega_{c}')
#IDEM2_sample3.addDerived(A_s, name='A_{s}' , label=r'10^{-9}A_{s } ')
#IDEM2_sample3.addDerived(n_s, name='n_{s}' , label=r'n_{s } ')
IDEM2_sample3.addDerived(sigma8, name='sigma{8}' , label=r'\sigma_{8} ')
IDEM2_sample3.addDerived(tau_reio, name='tau_{reio}' , label=r'\tau_{reio} ')


#4
p4=IDEM2_sample4.getParams()
gamma_lam=p4.gamma_lam
H0=p4.H0
Omega_m=p4.Omega_m 
M=p4.M
#omega_b=(p4.H0/100.0)**2*Omega_b
omega_b=p4.omega_b/100.0
omega_cdm=p4.omega_cdm
#A_s=p4.A_s
#n_s=p4.n_s
sigma8=p4.sigma8
tau_reio=p4.tau_reio
IDEM2_sample4.addDerived(gamma_lam, name='gamma' , label=r'\gamma')
IDEM2_sample4.addDerived(H0, name='H_0' , label=r'H_0')
IDEM2_sample4.addDerived(Omega_m, name='Omega_{m0}' , label=r'\Omega_{m0}')
IDEM2_sample4.addDerived(M, name='{M}' , label=r'M')
IDEM2_sample4.addDerived(omega_b, name='omega_{b}' , label=r'\omega_{b}')
IDEM2_sample4.addDerived(omega_cdm, name='omega_{cdm}' , label=r'\omega_{c}')
#IDEM2_sample4.addDerived(A_s, name='A_{s}' , label=r'10^{-9}A_{s } ')
#IDEM2_samplee4.addDerived(n_s, name='n_{s}' , label=r'n_{s } ')
IDEM2_sample4.addDerived(sigma8, name='sigma{8}' , label=r'\sigma_{8} ')
IDEM2_sample4.addDerived(tau_reio, name='tau_{reio}' , label=r'\tau_{reio} ')

#5
p5=IDEM2_sample5.getParams()
gamma_lam=p5.gamma_lam
H0=p5.H0
Omega_m=p5.Omega_m 
M=p5.M
#omega_b=(p5.H0/100.0)**2*Omega_b
omega_b=p5.omega_b/100.0
omega_cdm=p5.omega_cdm
#A_s=p5.A_s
#n_s=p5.n_s
sigma8=p5.sigma8
tau_reio=p5.tau_reio
IDEM2_sample5.addDerived(gamma_lam, name='gamma' , label=r'\gamma')
IDEM2_sample5.addDerived(H0, name='H_0' , label=r'H_0')
IDEM2_sample5.addDerived(Omega_m, name='Omega_{m0}' , label=r'\Omega_{m0}')
IDEM2_sample5.addDerived(M, name='{M}' , label=r'M')
IDEM2_sample5.addDerived(omega_b, name='omega_{b}' , label=r'\omega_{b}')
IDEM2_sample5.addDerived(omega_cdm, name='omega_{cdm}' , label=r'\omega_{c}')
#IDEM2_sample5.addDerived(A_s, name='A_{s}' , label=r'10^{-9}A_{s } ')
#IDEM2_sample5.addDerived(n_s, name='n_{s}' , label=r'n_{s } ')
IDEM2_sample5.addDerived(sigma8, name='sigma{8}' , label=r'\sigma_{8}')
IDEM2_sample5.addDerived(tau_reio, name='tau_{reio}' , label=r'\tau_{reio} ')



roots_data=[IDEM2_sample1, IDEM2_sample2, IDEM2_sample3, IDEM2_sample4,IDEM2_sample5]
#roots_data=[IDEM2_sample4, IDEM2_sample2, IDEM2_sample3, IDEM2_sample1,IDEM2_sample5]
#params = ['gamma','H_0','Omega_{m0}']
#roots_data=[IDEM2_sample3, IDEM2_sample4,IDEM2_sample5]
#params = ['H_0','A_s','n_s','sigma{8}', 'tau_reio','100theta_s','ln10^{10}A_s']
#params = ['H_0','Omega_{m0}','omega_{b}','omega_{cdm}']
#params = ['gamma','H_0','Omega_{m0}','omega_{b}','omega_{cdm}','M']


params = ['H_0','Omega_{m0}','omega_{b}','omega_{cdm}','M','A_s','n_s','sigma{8}','tau_{reio}','100theta_s','ln10^{10}A_s']


#g.settings.scaling_factor = 1
g = plots.get_subplot_plotter(width_inch=8)  # Initialize without chain_dir for single chain
g.triangle_plot(roots_data,
                params,
                #param_limits=param_limits,
                #nx=5,
                legend_labels=['Background ','Background+$H_0$','Planck','Background+Planck','Background+Planck+$H_0$'],
                #colors=['black','dodgerblue','orange','green','tomato'], colored_text=True,
                filled=True,
                #contour_lws=0.8
               )

# g.export('IDEM2_1.pdf', dpi=2000)

# #print(samples.getTable(limit=2).tableTex())
# print(ResultTable(ncol=1,results=roots_data,
#                   paramList=['gamma','H_0','Omega_{m0}','M','omega_{b}', 'omega_{cdm}','A_s','n_s','sigma{8}','tau_{reio}','100theta_s','ln10^{10}A_s'],
#                  limit=1).tableTex())
# print(ResultTable(ncol=1,results=roots_data,
#                   paramList=['gamma','H_0','Omega_{m0}','M','omega_{b}', 'omega_{cdm}','A_s','n_s','sigma{8}','tau_{reio}','100theta_s','ln10^{10}A_s'],
#                  limit=2).tableTex())

Activity

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions