Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

autobatching bug fixed. #1666

Open
wants to merge 2 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
9 changes: 6 additions & 3 deletions dynet/exec.cc
Original file line number Diff line number Diff line change
Expand Up @@ -566,8 +566,11 @@ const Tensor& BatchedExecutionEngine::incremental_forward_no_update(
*(active_un_end++) = j;
}
}
for (size_t j = 0; j < (size_t)sigmap.size(); ++j)
prof2avg[j] /= prof2cnt[j];
for (size_t j = 0; j < (size_t)sigmap.size(); ++j) // -prh sigmap.size() == 40
{
if(std::abs(prof2cnt[j]) > 1e-8)
prof2avg[j] /= prof2cnt[j];
}

// 2) Travel through and do active nodes
while (node_id != (VariableIndex)uptop1) {
Expand Down Expand Up @@ -1060,7 +1063,7 @@ void BatchedExecutionEngine::backward(VariableIndex from_where, bool full) {
// No concatenation whatsoever
if (my_batch.concat[ai] == 0) {
if (needs_derivative[node2batch[arg]]) {
node->backward(xs, my_batch.nfx, batched_ndEdfs[i], ai, batched_ndEdfs[node2batch[arg]]);
node->backward(xs, my_batch.nfx, batched_ndEdfs[i], ai, ndEdfs[arg]);
// cerr << "batched backward[" << i << "](" << ai << ")->" << node2batch[arg] << " == " << print_vec(as_vector(batched_ndEdfs[node2batch[arg]])) << endl;
}
// Needs concatenation
Expand Down
9 changes: 9 additions & 0 deletions dynet/matrix-multiply.h
Original file line number Diff line number Diff line change
Expand Up @@ -162,6 +162,11 @@ inline void MatrixTranspMultiplyAcc(const dynet::Device_CPU & dev, const dynet::
inline void MatrixMultiplyTranspAcc(const dynet::Device_GPU & dev, const dynet::Tensor& l, const dynet::Tensor& r, dynet::Tensor& y) {
int max_b = std::max(l.d.bd, r.d.bd);
if(y.d.bd == 1 && (l.d.bd == r.d.bd)) {
DYNET_ARG_CHECK(l.d.rows() == y.d.rows(), "MatrixMultiplyTranspAcc: l.d.rows() != y.d.rows()");
DYNET_ARG_CHECK(r.d.rows() == y.d.cols(), "MatrixMultiplyTranspAcc: r.d.rows() != y.d.cols()");
DYNET_ARG_CHECK(l.d.cols() == r.d.cols(), "MatrixMultiplyTranspAcc: l.d.cols() != r.d.cols()");
DYNET_ARG_CHECK(l.d.batch_elems() == r.d.batch_elems(), "MatrixMultiplyTranspAcc: l.d.batch_elems() != r.d.batch_elems()");

CUBLAS_CHECK(cublasSgemm(dev.cublas_handle, CUBLAS_OP_N, CUBLAS_OP_T,
y.d.rows(), y.d.cols(), l.d.cols() * l.d.batch_elems(),
dev.kSCALAR_ONE,
Expand All @@ -183,6 +188,10 @@ inline void MatrixMultiplyTranspAcc(const dynet::Device_GPU & dev, const dynet::
inline void MatrixMultiplyTranspAcc(const dynet::Device_CPU & dev, const dynet::Tensor& l, const dynet::Tensor& r, dynet::Tensor& y) {
int max_b = std::max(l.d.bd, r.d.bd);
if(y.d.bd == 1 && (l.d.bd == r.d.bd)) {
DYNET_ARG_CHECK(l.d.rows() == y.d.rows(), "MatrixMultiplyTranspAcc [CPU]: l.d.rows() != y.d.rows()");
DYNET_ARG_CHECK(r.d.rows() == y.d.cols(), "MatrixMultiplyTranspAcc [CPU]: r.d.rows() != y.d.cols()");
DYNET_ARG_CHECK(l.d.cols() == r.d.cols(), "MatrixMultiplyTranspAcc [CPU]: l.d.cols() != r.d.cols()");
DYNET_ARG_CHECK(l.d.batch_elems() == r.d.batch_elems(), "MatrixMultiplyTranspAcc [CPU]: l.d.batch_elems() != r.d.batch_elems()");
mat(y).noalias() += colbatch_matrix(l) * colbatch_matrix(r).transpose();
} else {
#ifdef __INTEL_MKL__
Expand Down
1 change: 1 addition & 0 deletions dynet/nodes-matrixmultiply.cc
Original file line number Diff line number Diff line change
Expand Up @@ -51,6 +51,7 @@ template<class MyDevice>
void MatrixMultiply::forward_dev_impl(const MyDevice & dev, const vector<const Tensor*>& xs, Tensor& fx) const {
DYNET_ASSERT(xs.size() == 2, "Failed dimension check in MatrixMultiply::forward");
DYNET_ARG_CHECK(fx.d.bd == max(xs[0]->d.bd, xs[1]->d.bd), "Failed dimension check in MatrixMultiply::forward");
DYNET_ARG_CHECK(fx.d.batch_size() == dim_forward({xs[0]->d, xs[1]->d}).batch_size(), "Failed result dimension check in MatrixMultiply::forward");
// fx = mat(fx0) + xs[0] * xs[1]
dynet::MatrixMultiply(dev, *xs[0], *xs[1], fx, dev.kSCALAR_ZERO);
}
Expand Down