Live site: https://your-org.github.io/prompt-engineering Boost your LLM projects with ready‑to‑use prompts, proven design patterns, and evaluation tools (PT‑BR 🇧🇷 & EN 🇬🇧).
Crafting great prompts is half art, half science – and the best examples are scattered across the internet. This repository collects battle‑tested prompts, explanatory patterns, and automation scripts so you can:
- Copy & paste high‑performing prompts for generation, extraction, classification, and transformation tasks.
- Understand the underlying patterns (Chain‑of‑Thought, ReAct, Persona Switching, etc.).
- Evaluate different models & settings using an open‑source harness wired into CI.
- Browse everything online via a GitHub Pages site with search, sidebars, and versioning.
The Markdown in this repo is rendered as a static site built with Docusaurus 3.
| Action | Command |
|---|---|
| Run docs locally | bun run docs:dev |
| Build static site | bun run docs:build |
| Preview build | bun run docs:serve |
A GitHub Action (.github/workflows/docs.yml) automatically deploys the /build output to the gh-pages branch after every push to main.
Tip: All Markdown under
prompts/,patterns/, andtemplates/is automatically picked up by Docusaurus viadocs/plugin-content-pages.
prompt-engineering/
├─ README.md ← you are here
├─ CONTRIBUTING.md ← how to contribute prompts & docs
├─ LICENSE ← MIT by default – change if needed
├─ docs/ ← Docusaurus config & static assets
│ ├─ docusaurus.config.ts
│ └─ sidebar.ts
├─ prompts/ ← ready‑to‑use prompts (with YAML front‑matter)
│ ├─ generation/
│ ├─ classification/
│ ├─ extraction/
│ └─ transformation/
├─ patterns/ ← conceptual guides & anti‑patterns
├─ templates/ ← blank skeletons to kick‑start new prompts
├─ evals/ ← evaluation harnesses & metrics
└─ tools/ ← CLI utilities (index generator, linter, etc.)
Every prompt starts with required YAML metadata so scripts can build an index and Docusaurus can create filters:
---
title: "LinkedIn Post Generator"
category: generation
tags: [marketing, social-media, portuguese, english]
model: agnostic
temperature: 0.8
author: "Ciro Maciel"
updated: 2025-05-17
description: |
Generates an engaging LinkedIn post on any topic.
---The prompt body goes below the front‑matter.
# 1. Clone the repository
$ git clone https://github.com/your-org/prompt-engineering.git
$ cd prompt-engineering
# 2. Install dependencies (Node ≥18 + bun recommended)
$ bun install # or npm install / pnpm i
# 3. Serve docs locally (auto‑reload)
$ bun run docs:dev # then open http://localhost:3000
# 4. Explore prompts in /prompts & /patterns ✨Inside evals/ you’ll find harnesses based on Promptfoo and LangChain benchmarks.
Run bun run tools/eval --prompt prompts/generation/linkedin_post.md to compare models and hyper‑parameters.
We welcome pull requests! Please skim CONTRIBUTING.md, but in short:
- Fork → Branch → Add your Markdown under the correct folder.
- Keep front‑matter complete; run
bun run checkto lint. - Commit + open PR.
- CI will run lint, docs build, and eval smoke‑tests.
Feel free to open issues with questions or suggestions.
Released under the MIT License – see LICENSE.
- OpenAI best‑practice research.
- Bun for ultra‑fast TypeScript tooling.
- The community of prompt engineers who share their wisdom.
Happy prompting & see you on the docs site! 🚀