forked from tensorflow/hub
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Markdown files and example colab for Conv3d-base inbetweening TFHub m…
…odules for BAIR and KTH. PiperOrigin-RevId: 273249523
- Loading branch information
1 parent
fe1965a
commit a5484c6
Showing
1 changed file
with
254 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,254 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"colab_type": "text", | ||
"id": "wC0PtNm3Sa_T" | ||
}, | ||
"source": [ | ||
"**bold text**##### Copyright 2019 The TensorFlow Hub Authors.\n", | ||
"\n", | ||
"Licensed under the Apache License, Version 2.0 (the \"License\");" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 0, | ||
"metadata": { | ||
"colab": {}, | ||
"colab_type": "code", | ||
"id": "hgOqPjRKSa-7" | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"# Copyright 2019 The TensorFlow Hub Authors. All Rights Reserved.\n", | ||
"#\n", | ||
"# Licensed under the Apache License, Version 2.0 (the \"License\");\n", | ||
"# you may not use this file except in compliance with the License.\n", | ||
"# You may obtain a copy of the License at\n", | ||
"#\n", | ||
"# http://www.apache.org/licenses/LICENSE-2.0\n", | ||
"#\n", | ||
"# Unless required by applicable law or agreed to in writing, software\n", | ||
"# distributed under the License is distributed on an \"AS IS\" BASIS,\n", | ||
"# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", | ||
"# See the License for the specific language governing permissions and\n", | ||
"# limitations under the License.\n", | ||
"# ==============================================================================" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"colab_type": "text", | ||
"id": "oKAkxAYuONU6" | ||
}, | ||
"source": [ | ||
"# Demo TF-Hub for video generation using Inbetweening 3d Convolutions\n", | ||
"\n", | ||
"Yunpeng Li, Dominik Roblek, and Marco Tagliasacchi. From Here to There: Video Inbetweening Using Direct 3D Convolutions, 2019.\n", | ||
"\n", | ||
"https://arxiv.org/abs/1905.10240\n", | ||
"\n", | ||
"\n", | ||
"Current Hub characteristics:\n", | ||
"- has models for BAIR Robot pushing videos and KTH action video dataset (though this colab uses only BAIR)\n", | ||
"- BAIR dataset already available in Hub. However, KTH videos need to be supplied by the users themselves.\n", | ||
"- only evaluation (video generation) for now\n", | ||
"- batch size and frame size are hard-coded\n", | ||
"- Tensorflow 1.x only\n", | ||
"\n", | ||
"IMPORTANT NOTE: If an error of \"Not enough disk space\" appears, it's likely due to the downloading of the full dataset (~30GB). In that case, we recommend either connecting via a local runtime or downloading the dataset to Google Drive and loading it manually instead of calling tfds.load()." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 0, | ||
"metadata": { | ||
"colab": {}, | ||
"colab_type": "code", | ||
"id": "GhIKakhc7JYL" | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"from __future__ import absolute_import, division, print_function\n", | ||
"\n", | ||
"import numpy as np\n", | ||
"import tensorflow as tf\n", | ||
"import tensorflow_hub as hub\n", | ||
"import tensorflow_datasets as tfds" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"colab_type": "text", | ||
"id": "iaGU8hhBPi_6" | ||
}, | ||
"source": [ | ||
"## BAIR: Demo based on numpy array inputs" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 0, | ||
"metadata": { | ||
"cellView": "both", | ||
"colab": {}, | ||
"colab_type": "code", | ||
"id": "IgWmW8YzEiDo" | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"# @title Load some example data (BAIR).\n", | ||
"batch_size = 16\n", | ||
"with tf.Graph().as_default():\n", | ||
" # If unable to download the dataset automatically due to \"not enough disk space\", please download manually to Google Drive and\n", | ||
" # load using tf.data.TFRecordDataset.\n", | ||
" ds = tfds.load('bair_robot_pushing_small', split='test')\n", | ||
" test_videos = ds.batch(batch_size).make_one_shot_iterator().get_next()['image_aux1'][:, ::15]\n", | ||
" with tf.train.MonitoredSession() as sess:\n", | ||
" input_frames = sess.run(test_videos)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 0, | ||
"metadata": { | ||
"cellView": "form", | ||
"colab": {}, | ||
"colab_type": "code", | ||
"id": "96Jd5XefGHRr" | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"# @title Visualize loaded videos start and end frames.\n", | ||
"import matplotlib.pyplot as plt\n", | ||
"import numpy as np\n", | ||
"import seaborn as sns\n", | ||
"\n", | ||
"print('Test videos shape [batch_size, start/end frame, height, width, num_channels]: ', input_frames.shape)\n", | ||
"sns.set_style('white')\n", | ||
"plt.figure(figsize=(4, 2*batch_size))\n", | ||
"\n", | ||
"for i in range(batch_size)[:4]:\n", | ||
" plt.subplot(batch_size, 2, 1 + 2*i)\n", | ||
" plt.imshow(input_frames[i, 0])\n", | ||
" plt.title('Video {}: First frame'.format(i))\n", | ||
" plt.axis('off')\n", | ||
" plt.subplot(batch_size, 2, 2 + 2*i)\n", | ||
" plt.imshow(input_frames[i, 1])\n", | ||
" plt.title('Video {}: Last frame'.format(i))\n", | ||
" plt.axis('off')" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"colab_type": "text", | ||
"id": "w0FFhkikQABy" | ||
}, | ||
"source": [ | ||
"### Load Hub Module" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 0, | ||
"metadata": { | ||
"colab": {}, | ||
"colab_type": "code", | ||
"id": "N3__RcL9J5aG" | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"tf.reset_default_graph()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 0, | ||
"metadata": { | ||
"colab": {}, | ||
"colab_type": "code", | ||
"id": "cLAUiWfEQAB5" | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"hub_handle = 'https://tfhub.dev/google/tweening_conv3d_bair/1'\n", | ||
"module = hub.Module(hub_handle)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"colab_type": "text", | ||
"id": "PVHTdXnhbGsK" | ||
}, | ||
"source": [ | ||
"### Generate and show the videos" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 0, | ||
"metadata": { | ||
"colab": {}, | ||
"colab_type": "code", | ||
"id": "04LPFDmRQAB7" | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"# Expected inputs as a placeholder.\n", | ||
"inputs_ph = tf.placeholder(dtype=tf.float32, shape=(None, 2, None, None, 3))\n", | ||
"outputs = module(inputs_ph)\n", | ||
"\n", | ||
"# Run graph for given numpy arrays.\n", | ||
"with tf.train.MonitoredSession() as sess:\n", | ||
" filled_frames = sess.run(outputs, feed_dict={inputs_ph: input_frames}).astype(np.uint8)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 0, | ||
"metadata": { | ||
"colab": {}, | ||
"colab_type": "code", | ||
"id": "tVesWHTnSW1Z" | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"# Show sequences of generated video frames.\n", | ||
"\n", | ||
"# Concatenate start/end frames and the generated filled frames for the new videos.\n", | ||
"generated_videos = np.concatenate([input_frames[:, :1], filled_frames, input_frames[:, 1:]], axis=1)\n", | ||
"\n", | ||
"for i in range(4):\n", | ||
" fig = plt.figure(figsize=(10*2, 2))\n", | ||
" for j in range(1, 16):\n", | ||
" ax = fig.add_axes([j*1/16., 0, (j+1)*1/16., 1], xmargin=0, ymargin=0)\n", | ||
" ax.imshow(generated_videos[i, j])\n", | ||
" ax.axis('off')" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"colab": { | ||
"collapsed_sections": [], | ||
"last_runtime": { | ||
"build_target": "//learning/brain/python/client:colab_notebook", | ||
"kind": "private" | ||
}, | ||
"name": "Inbetweening TF-Hub Module.ipynb", | ||
"provenance": [], | ||
"toc_visible": true | ||
}, | ||
"kernelspec": { | ||
"display_name": "Python 2", | ||
"name": "python2" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 0 | ||
} |