A Python package designed to facilitate the generation of structured summaries and insights from user-provided news headlines or short articles. It uses pattern matching to ensure responses are consistently formatted, enabling quick extraction of key information such as main issues, affected regions, or sentiment.
- Structured summaries from news headlines or short articles
- Pattern matching for consistent response formatting
- Extraction of key information (main issues, affected regions, sentiment)
- Support for multiple LLM providers
- Easy integration with LangChain
pip install news_summarizerfrom news_summarizer import news_summarizer
user_input = "Your news headline or short article here"
response = news_summarizer(user_input)
print(response)You can use any LLM compatible with LangChain. Here are examples with different providers:
from langchain_openai import ChatOpenAI
from news_summarizer import news_summarizer
llm = ChatOpenAI()
response = news_summarizer(user_input, llm=llm)
print(response)from langchain_anthropic import ChatAnthropic
from news_summarizer import news_summarizer
llm = ChatAnthropic()
response = news_summarizer(user_input, llm=llm)
print(response)from langchain_google_genai import ChatGoogleGenerativeAI
from news_summarizer import news_summarizer
llm = ChatGoogleGenerativeAI()
response = news_summarizer(user_input, llm=llm)
print(response)from news_summarizer import news_summarizer
user_input = "Your news headline or short article here"
api_key = "your_api_key_here"
response = news_summarizer(user_input, api_key=api_key)
print(response)user_input(str): The user input text to processllm(Optional[BaseChatModel]): The LangChain LLM instance to use. If not provided, the defaultChatLLM7will be used.api_key(Optional[str]): The API key for LLM7. If not provided, the environment variableLLM7_API_KEYwill be used.
The package uses ChatLLM7 from langchain_llm7 by default. You can safely pass your own LLM instance if you want to use another LLM.
The default rate limits for LLM7 free tier are sufficient for most use cases of this package. If you want higher rate limits for LLM7, you can pass your own API key via the environment variable LLM7_API_KEY or directly via the api_key parameter. You can get a free API key by registering at LLM7.
If you encounter any issues, please report them on the GitHub issues page.
- Eugene Evstafev
- Email: hi@eugene.plus
- GitHub: chigwell