Skip to content

chen0040/java-adaptive-resonance-theory

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

22 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

java-adaptive-resonance-theory

Package provides java implementation of algorithms in the field of adaptive resonance theory (ART)

Build Status Coverage Status

Install

Add the following dependency to your POM file:

<dependency>
  <groupId>com.github.chen0040</groupId>
  <artifactId>java-adaptive-resonance-theory</artifactId>
  <version>1.0.6</version>
</dependency>

Features

Algorithms included:

  • ART1
  • FuzzyART
  • ARTMAP

Applications included:

  • Clustering (FuzzyART, ART1)
  • Multi-class Classification (ARTMAP)
  • Reinforcement Learning (FuzzyART)

Usage

Multi-class Classification using ARTMAP

To create and train a ARTMAP classifier:

ARTMAPClassifier classifier = new ARTMAPClassifier();
clasifier.fit(trainingData);

The "trainingData" is a data frame which holds data rows with labeled output (Please refers to this link to find out how to store data into a data frame)

To predict using the trained ARTMAP classifier:

String predicted_label = classifier.transform(dataRow);

The detail on how to use this can be found in the unit testing codes. Below is a complete sample codes of classifying on the libsvm-formatted heart-scale data:

InputStream inputStream = new FileInputStream("heart_scale");
DataFrame dataFrame = DataQuery.libsvm().from(inputStream).build();

// as the dataFrame obtained thus far has numeric output instead of labeled categorical output, the code below performs the categorical output conversion
dataFrame.unlock();
for(int i=0; i < dataFrame.rowCount(); ++i){
 DataRow row = dataFrame.row(i);
 row.setCategoricalTargetCell("category-label", "" + row.target());
}
dataFrame.lock();

double alpha = 9.89;
double beta = 0.3;
double rho = 0.01;
classifier.setAlpha(alpha);
classifier.setBeta(beta);
classifier.setRho0(rho);

classifier.fit(dataFrame);

for(int i = 0; i < dataFrame.rowCount(); ++i){
  DataRow tuple = dataFrame.row(i);
  String predicted_label = classifier.transform(tuple);
  System.out.println("predicted: "+predicted_label+"\tactual: "+tuple.categoricalTarget());
}

Spatial Segmentation (Clustering) using ART1

The following sample code shows how to do clustering using ART1:

DataQuery.DataFrameQueryBuilder schema = DataQuery.blank()
      .newInput("c1")
      .newInput("c2")
      .newOutput("designed")
      .end();

Sampler.DataSampleBuilder negativeSampler = new Sampler()
      .forColumn("c1").generate((name, index) -> randn() * 0.3 + (index % 2 == 0 ? 2 : 4))
      .forColumn("c2").generate((name, index) -> randn() * 0.3 + (index % 2 == 0 ? 2 : 4))
      .forColumn("designed").generate((name, index) -> 0.0)
      .end();

Sampler.DataSampleBuilder positiveSampler = new Sampler()
      .forColumn("c1").generate((name, index) -> rand(-4, -2))
      .forColumn("c2").generate((name, index) -> rand(-2, -4))
      .forColumn("designed").generate((name, index) -> 1.0)
      .end();

DataFrame data = schema.build();

data = negativeSampler.sample(data, 200);
data = positiveSampler.sample(data, 200);

System.out.println(data.head(10));

ART1Clustering algorithm = new ART1Clustering();

DataFrame learnedData = algorithm.fitAndTransform(data);

for(int i = 0; i < learnedData.rowCount(); ++i){
 DataRow tuple = learnedData.row(i);
 String clusterId = tuple.getCategoricalTargetCell("cluster");
 System.out.println("learned: " + clusterId +"\tknown: "+tuple.target());
}

Image Segmentation (Clustering) using FuzzyART

The following sample code shows how to use FuzzyART to perform image segmentation:

BufferedImage img= ImageIO.read(FileUtils.getResource("1.jpg"));

DataFrame dataFrame = ImageDataFrameFactory.dataFrame(img);

FuzzyARTClustering cluster = new FuzzyARTClustering();

DataFrame learnedData = cluster.fitAndTransform(dataFrame);

for(int i=0; i <learnedData.rowCount(); ++i) {
 ImageDataRow row = (ImageDataRow)learnedData.row(i);
 int x = row.getPixelX();
 int y = row.getPixelY();
 String clusterId = row.getCategoricalTargetCell("cluster");
 System.out.println("cluster id for pixel (" + x + "," + y + ") is " + clusterId);
}

The segmented image can be generated using the trained KMeans from above as illustrated by the following sample code:

List<Integer> classColors = new ArrayList<Integer>();
for(int i=0; i < 5; ++i){
 for(int j=0; j < 5; ++j){
    classColors.add(ImageDataFrameFactory.get_rgb(255, rand.nextInt(255), rand.nextInt(255), rand.nextInt(255)));
 }
}

BufferedImage segmented_image = new BufferedImage(img.getWidth(), img.getHeight(), img.getType());
for(int x=0; x < img.getWidth(); x++)
{
 for(int y=0; y < img.getHeight(); y++)
 {
    int rgb = img.getRGB(x, y);

    DataRow tuple = ImageDataFrameFactory.getPixelTuple(x, y, rgb);

    int clusterIndex = cluster.transform(tuple);

    rgb = classColors.get(clusterIndex % classColors.size());

    segmented_image.setRGB(x, y, rgb);
 }
}

Reinforcement Learning

There is also an example of reinforcement learning (TD-learning using Q-Learning and SARSA) based on FuzzyART. It is known as "FALCON A Fusion Architecture for Learning Cognition and Navigation", and the sample codes can be found in the src/test/java/com/github/chen0040/art/falcon/simulation/minefield The reinforcement learning objective is to navigate a tank (the agent) to a target flag in a mine field, sensors are available to the tank when making decision to turn and move forward, immediate reward and delayed rewards were given to the tank during the Q-Learning and SARSA reinforcement learning process. To launch the reinforcement learning, right-click MineFieldSimulatorGUI.java and select "Run in main()" in the IntelliJ editor popup menu (or something similar in eclipse or other editors), in the GUI launched, select "File->Start Simulation" (slow training mode) or "File->Start Simulation (No GUI)" (fast training mode)

About

Package provides java implementation of algorithms in the field of adaptive resonance theory (ART)

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published