forked from zhenming33/RAN_torch
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
wangzhenming
committed
Jan 9, 2019
1 parent
f9781e1
commit 6f4da40
Showing
10 changed files
with
1,354,943 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,230 @@ | ||
import torch | ||
from torch import nn | ||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | ||
# device = torch.device('cpu') | ||
|
||
class scale_and_shift(nn.Module): | ||
def __init__(self): | ||
super(scale_and_shift, self).__init__() | ||
|
||
self.alpha = torch.ones(1).to(device) | ||
self.beta = torch.zeros(1).to(device) | ||
|
||
def forward(self, input): | ||
return input * self.alpha + self.beta | ||
|
||
|
||
|
||
class crelu(nn.Module): | ||
def __init__(self, in_channels, out_channels, kernel_size, stride, padding): | ||
super(crelu, self).__init__() | ||
|
||
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding) | ||
self.bn = nn.BatchNorm2d(out_channels) | ||
self.scale_and_shift = scale_and_shift() | ||
self.relu = nn.ReLU() | ||
|
||
def forward(self, input): | ||
x = self.conv(input) | ||
x = self.bn(x) | ||
x2 = -x | ||
x = torch.cat((x,x2),1) | ||
x = self.scale_and_shift(x) | ||
x = self.relu(x) | ||
return x | ||
|
||
|
||
class bn_scale_relu(nn.Module): | ||
def __init__(self, in_channels): | ||
super(bn_scale_relu, self).__init__() | ||
|
||
self.bn = nn.BatchNorm2d(in_channels) | ||
self.scale_and_shift = scale_and_shift() | ||
self.relu = nn.ReLU() | ||
|
||
def forward(self, input): | ||
x = self.bn(input) | ||
x = self.scale_and_shift(x) | ||
x = self.relu(x) | ||
return x | ||
|
||
class res_crelu(nn.Module): | ||
def __init__(self, in_channels, middle_channels, out_channels, kernel_size, stride, padding, bsr, proj): | ||
super(res_crelu, self).__init__() | ||
|
||
self.bsr = bsr | ||
self.proj = proj | ||
self.bn_scale_relu_input = bn_scale_relu(in_channels) | ||
self.bn_scale_relu_conv1 = bn_scale_relu(middle_channels[0]) | ||
if self.proj: | ||
self.shortcut_conv = nn.Conv2d(in_channels, out_channels, (1, 1), stride) | ||
self.conv1 = nn.Conv2d(in_channels, middle_channels[0], (1, 1), stride, (0, 0)) | ||
self.conv2 = nn.Conv2d(middle_channels[0], middle_channels[1], kernel_size, (1, 1), padding) | ||
self.bn = nn.BatchNorm2d(middle_channels[1]) | ||
self.scale = scale_and_shift() | ||
self.relu = nn.ReLU() | ||
self.conv3 = nn.Conv2d(2*middle_channels[1], out_channels, (1, 1), (1, 1), (0, 0)) | ||
|
||
def forward(self, input): | ||
if self.bsr: | ||
x = self.bn_scale_relu_input(input) | ||
else: | ||
x = input | ||
if self.proj: | ||
shortcut = self.shortcut_conv(input) | ||
else: | ||
shortcut = input | ||
conv1 = self.conv1(x) | ||
bsr = self.bn_scale_relu_conv1(conv1) | ||
conv2 = self.conv2(bsr) | ||
bn = self.bn(conv2) | ||
bn2 = -bn | ||
bn = torch.cat((bn, bn2), 1) | ||
scale = self.scale(bn) | ||
relu = self.relu(scale) | ||
conv3 = self.conv3(relu) | ||
act = conv3 + shortcut | ||
return act | ||
|
||
class Conv(nn.Module): | ||
def __init__(self, in_channels, out_channels = 1, kernel_size = (1, 1), stride = (1, 1), padding = (0, 0)): | ||
super(Conv, self).__init__() | ||
|
||
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding) | ||
self.bn = nn.BatchNorm2d(out_channels) | ||
self.scale = scale_and_shift() | ||
self.act = nn.ReLU() | ||
|
||
def forward(self, input): | ||
conv = self.conv(input) | ||
bn = self.bn(conv) | ||
scale = self.scale(bn) | ||
act = self.act(scale) | ||
return act | ||
|
||
class inception(nn.Module): | ||
def __init__(self, in_channels, middle_channels, out_channels, kernel, stride, proj, last=False): | ||
super(inception, self).__init__() | ||
|
||
self.stride = stride | ||
self.last = last | ||
self.proj = proj | ||
if self.proj: | ||
self.shortcut_conv = nn.Conv2d(in_channels, out_channels, (1, 1), stride) | ||
self.bsr = bn_scale_relu(in_channels) | ||
self.conv_a = nn.Conv2d(in_channels, middle_channels[0], (1, 1), stride, (0, 0)) | ||
|
||
self.conv_b1 = Conv(in_channels, middle_channels[1][0], (1, 1), stride, (0, 0)) | ||
self.conv_b2 = Conv(middle_channels[1][0], middle_channels[1][1], kernel, (1, 1), (1, 1)) | ||
|
||
|
||
self.conv_c1 = Conv(in_channels, middle_channels[2][0], (1, 1), stride, (0, 0)) | ||
self.conv_c2 = Conv(middle_channels[2][0], middle_channels[2][1], kernel, (1, 1), (1, 1)) | ||
self.conv_c3 = Conv(middle_channels[2][1], middle_channels[2][2], kernel, (1, 1), (1, 1)) | ||
|
||
if self.stride[1] > 1: | ||
self.pool_d = nn.MaxPool2d(kernel, stride, (1, 1)) | ||
self.conv_d = Conv(in_channels, middle_channels[3], (1, 1), (1, 1), (0, 0)) | ||
self.conv = nn.Conv2d(middle_channels[0] + middle_channels[1][1] + middle_channels[2][2] + middle_channels[3], | ||
out_channels, (1, 1), (1, 1), (0, 0)) | ||
else: | ||
self.conv = nn.Conv2d(middle_channels[0] + middle_channels[1][1] + middle_channels[2][2], out_channels, (1, 1), (1, 1), (0, 0)) | ||
|
||
if self.last: | ||
self.bn = nn.BatchNorm2d(out_channels) | ||
self.scale = scale_and_shift() | ||
|
||
def forward(self, input): | ||
if self.proj: | ||
shortcut = self.shortcut_conv(input) | ||
else: | ||
shortcut = input | ||
bsr = self.bsr(input) | ||
conv_a = self.conv_a(bsr) | ||
|
||
conv_b1 = self.conv_b1(bsr) | ||
conv_b2 = self.conv_b2(conv_b1) | ||
|
||
conv_c1 = self.conv_c1(bsr) | ||
conv_c2 = self.conv_c2(conv_c1) | ||
conv_c3 = self.conv_c3(conv_c2) | ||
|
||
if self.stride[1] > 1: | ||
pool_d = self.pool_d(bsr) | ||
conv_d = self.conv_d(pool_d) | ||
conv_concat = torch.cat((conv_a, conv_b2, conv_c3, conv_d), 1) | ||
else: | ||
conv_concat = torch.cat((conv_a, conv_b2, conv_c3), 1) | ||
|
||
conv = self.conv(conv_concat) | ||
|
||
if self.last: | ||
bn = self.bn(conv) | ||
scale = self.scale(bn) | ||
output = scale + shortcut | ||
else: | ||
output = conv + shortcut | ||
|
||
return output | ||
|
||
|
||
class PVANet(nn.Module): | ||
def __init__(self, in_channels, out_channels): | ||
super(PVANet, self).__init__() | ||
self.conv1_1 = crelu(in_channels, 16, (7, 7), (3, 3), (2, 2)) | ||
self.pool1_1 = nn.MaxPool2d((3, 3), (2, 2), (1, 1)) | ||
self.conv2_1 = res_crelu(32, [24, 24], 64, (3, 3), (1, 1), (1, 1), False, True) | ||
self.conv2_2 = res_crelu(64, [24, 24], 64, (3, 3), (1, 1), (1, 1), True, False) | ||
self.conv2_3 = res_crelu(64, [24, 24], 64, (3, 3), (1, 1), (1, 1), True, False) | ||
self.scale3_1 = bn_scale_relu(64) | ||
self.conv3_1 = res_crelu(64, [48, 48], 128, (3, 3), (2, 2), (1, 1), False, True) | ||
self.conv3_2 = res_crelu(128, [48, 48], 128, (3, 3), (1, 1), (1, 1), True, False) | ||
self.conv3_3 = res_crelu(128, [48, 48], 128, (3, 3), (1, 1), (1, 1), True, False) | ||
self.conv3_4 = res_crelu(128, [48, 48], 128, (3, 3), (1, 1), (1, 1), True, False) | ||
self.downscale = nn.MaxPool2d((3, 3), (2, 2), (1, 1)) | ||
self.conv4_1 = inception(128, [64, [48, 128], [24, 48, 48], 128], 256, (3, 3), (2, 2), True) | ||
self.conv4_2 = inception(256, [64, [64, 128], [24, 48, 48]], 256, (3, 3), (1, 1), False) | ||
self.conv4_3 = inception(256, [64, [64, 128], [24, 48, 48]], 256, (3, 3), (1, 1), False) | ||
self.conv4_4 = inception(256, [64, [64, 128], [24, 48, 48]], 256, (3, 3), (1, 1), False) | ||
self.conv5_1 = inception(256, [64, [96, 192], [32, 64, 64], 128], 384, (3, 3), (2, 2), True) | ||
self.conv5_2 = inception(384, [64, [96, 192], [32, 64, 64]], 384, (3, 3), (1, 1), False) | ||
self.conv5_3 = inception(384, [64, [96, 192], [32, 64, 64]], 384, (3, 3), (1, 1), False) | ||
self.conv5_4 = inception(384, [64, [96, 192], [32, 64, 64]], 384, (3, 3), (1, 1), False, True) | ||
self.bsr = bn_scale_relu(384) | ||
self.upscale = nn.ConvTranspose2d(384, 384, (4, 4), (2, 2), (1, 1)) | ||
self.convf = nn.Conv2d(128 + 256 + 384, out_channels, (1, 1), (1, 1), (0, 0)) | ||
|
||
def forward(self, input): | ||
#input shape : (32, 3, 224, 224) | ||
conv1_1 = self.conv1_1(input) #(32, 32, 74, 74) | ||
pool1_1 = self.pool1_1(conv1_1) #(32, 32, 37, 37) | ||
conv2_1 = self.conv2_1(pool1_1) #(32, 64, 37, 37) | ||
conv2_2 = self.conv2_2(conv2_1) #(32, 64, 37, 37) | ||
conv2_3 = self.conv2_3(conv2_2) #(32, 64, 37, 37) | ||
scale3_1 = self.scale3_1(conv2_3) #(32, 64, 37, 37) | ||
conv3_1 = self.conv3_1(scale3_1) #(32, 128, 19, 19) | ||
conv3_2 = self.conv3_2(conv3_1) #(32, 128, 19, 19) | ||
conv3_3 = self.conv3_3(conv3_2) #(32, 128, 19, 19) | ||
conv3_4 = self.conv3_4(conv3_3) #(32, 128, 19, 19) | ||
downscale = self.downscale(conv3_4) #(32, 128, 10, 10) | ||
conv4_1 = self.conv4_1(conv3_4) #(32, 256, 10, 10) | ||
conv4_2 = self.conv4_2(conv4_1) #(32, 256, 10, 10) | ||
conv4_3 = self.conv4_3(conv4_2) #(32, 256, 10, 10) | ||
conv4_4 = self.conv4_4(conv4_3) #(32, 256, 10, 10) | ||
conv5_1 = self.conv5_1(conv4_4) #(32, 384, 5, 5) | ||
conv5_2 = self.conv5_2(conv5_1) #(32, 384, 5, 5) | ||
conv5_3 = self.conv5_3(conv5_2) #(32, 384, 5, 5) | ||
conv5_4 = self.conv5_4(conv5_3) #(32, 384, 5, 5) | ||
|
||
bsr = self.bsr(conv5_4) #(32, 384, 5, 5) | ||
upscale = self.upscale(bsr) | ||
concat = torch.cat((downscale, conv4_4, upscale), 1) | ||
convf =self.convf(concat) | ||
return convf | ||
|
||
|
||
if __name__ == '__main__': | ||
x = torch.Tensor(32,3,224,224).to(device) | ||
x = PVANet(3, 512).to(device)(x) | ||
print(x.size()) | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,93 @@ | ||
# -*- coding: utf-8 -*- | ||
""" | ||
Created on Wed Sep 5 14:27:35 2018 | ||
@author: ensur | ||
""" | ||
|
||
import os | ||
import numpy as np | ||
import pickle | ||
|
||
# generate all characters dict | ||
lines = open('cjkvi-ids/ids.txt',encoding='UTF-8').readlines()[2:] | ||
char_seq = {} | ||
char_seq['⿰'] = '⿰' | ||
char_seq['⿱'] = '⿱' | ||
char_seq['⿵'] = '⿵' | ||
char_seq['⿻'] = '⿻' | ||
char_seq['⿺'] = '⿺' | ||
char_seq['⿹'] = '⿹' | ||
char_seq['⿶'] = '⿶' | ||
char_seq['⿳'] = '⿳' | ||
char_seq['⿴'] = '⿴' | ||
char_seq['⿸'] = '⿸' | ||
char_seq['⿷'] = '⿷' | ||
char_seq['⿲'] = '⿲' | ||
char_seq['A'] = 'A' | ||
char_seq['H'] = 'H' | ||
char_seq['U'] = 'U' | ||
char_seq['X'] = 'X' | ||
for i in range(len(lines)): | ||
a = lines[i].split(' ')[0].replace('\n','').split('\t') | ||
seq = a[2].replace(' ','').replace('[','').replace(']','')\ | ||
.replace('G','').replace('T','').replace('J','')\ | ||
.replace('K','').replace('V','') | ||
char_seq[a[1]] = seq | ||
|
||
for i in range(len(lines)): | ||
a = lines[i].split(' ')[0].replace('\n','').split('\t') | ||
seq = a[2].replace(' ','').replace('[','').replace(']','')\ | ||
.replace('G','').replace('T','').replace('J','')\ | ||
.replace('K','').replace('V','') | ||
for k in seq: | ||
char_seq[k] | ||
|
||
# analysis all seq | ||
def is_all(seq): | ||
all_len = [len(char_seq[c]) for c in seq] | ||
if max(all_len) > 1: | ||
return False | ||
else: | ||
return True | ||
|
||
char_seq_all = {} | ||
for i in range(len(lines)): | ||
print(i) | ||
a = lines[i].split(' ')[0].replace('\n','').split('\t') | ||
char = a[1] | ||
seq_tmp = char_seq[a[1]] | ||
while not is_all(seq_tmp): | ||
for k in range(len(seq_tmp)): | ||
if len(char_seq[seq_tmp[k]]) > 1: | ||
seq_tmp = seq_tmp.replace(seq_tmp[k],char_seq[seq_tmp[k]]) | ||
print(seq_tmp) | ||
char_seq_all[char] = seq_tmp | ||
|
||
alphabet = '' | ||
for value in char_seq_all.values(): | ||
alphabet += value | ||
alphabet = list(set(alphabet)) | ||
alphabet = ''.join(alphabet) | ||
|
||
print(len(alphabet)) | ||
|
||
char_seq_index = {} | ||
for keys in char_seq_all.keys(): | ||
char_seq_index[keys] = [alphabet.index(c) for c in list(char_seq_all[keys])] | ||
|
||
#保存序列 | ||
save_file = open('char2seq_dict_real.pkl', 'wb') | ||
pickle.dump(char_seq_all, save_file) | ||
save_file.close() | ||
|
||
#保存序列 | ||
save_file = open('char2seq_dict.pkl', 'wb') | ||
pickle.dump(char_seq_index, save_file) | ||
save_file.close() | ||
|
||
|
||
#保存字典 | ||
f = open('radical_alphabet.txt','w',encoding='utf-8') | ||
f.write(alphabet) | ||
f.close() |
Binary file not shown.
Oops, something went wrong.