Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merging main into workshop #6

Merged
merged 17 commits into from
Jun 12, 2024
Merged
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Prev Previous commit
Next Next commit
single seed for example
  • Loading branch information
matthew-dowling committed Jun 10, 2024
commit f6f0942fe3116812fbb03502a3dae8a60af64d47
84 changes: 40 additions & 44 deletions examples/monkey_reaching/inference_smoother_acausal.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,61 +9,57 @@


def main():
# at t=n_bins_bhv start forecast
n_bins_bhv = 10

torch.cuda.empty_cache()
initialize(version_base=None, config_path="", job_name="monkey_reaching")
cfg = compose(config_name="config")

n_bins_bhv = 10
seeds = [1234, 1235, 1236]

"""config"""
for seed in seeds:
cfg.seed = seed

lightning.seed_everything(cfg.seed, workers=True)
torch.set_default_dtype(torch.float32)
lightning.seed_everything(cfg.seed, workers=True)
torch.set_default_dtype(torch.float32)

"""data"""
data_path = 'data/data_{split}_{bin_sz_ms}ms.pt'
train_data = torch.load(data_path.format(split='train', bin_sz_ms=cfg.bin_sz_ms))
val_data = torch.load(data_path.format(split='valid', bin_sz_ms=cfg.bin_sz_ms))
test_data = torch.load(data_path.format(split='test', bin_sz_ms=cfg.bin_sz_ms))
"""data"""
data_path = 'data/data_{split}_{bin_sz_ms}ms.pt'
train_data = torch.load(data_path.format(split='train', bin_sz_ms=cfg.bin_sz_ms))
val_data = torch.load(data_path.format(split='valid', bin_sz_ms=cfg.bin_sz_ms))
test_data = torch.load(data_path.format(split='test', bin_sz_ms=cfg.bin_sz_ms))

y_valid_obs = val_data['y_obs'].type(torch.float32).to(cfg.data_device)
y_train_obs = train_data['y_obs'].type(torch.float32).to(cfg.data_device)
y_test_obs = test_data['y_obs'].type(torch.float32).to(cfg.data_device)
vel_valid = val_data['velocity'].type(torch.float32).to(cfg.data_device)
vel_train = train_data['velocity'].type(torch.float32).to(cfg.data_device)
vel_test = test_data['velocity'].type(torch.float32).to(cfg.data_device)
n_trials, n_time_bins, n_neurons_obs = y_train_obs.shape
n_time_bins_enc = train_data['n_time_bins_enc']
y_valid_obs = val_data['y_obs'].type(torch.float32).to(cfg.data_device)
y_train_obs = train_data['y_obs'].type(torch.float32).to(cfg.data_device)
y_test_obs = test_data['y_obs'].type(torch.float32).to(cfg.data_device)
vel_valid = val_data['velocity'].type(torch.float32).to(cfg.data_device)
vel_train = train_data['velocity'].type(torch.float32).to(cfg.data_device)
vel_test = test_data['velocity'].type(torch.float32).to(cfg.data_device)
n_trials, n_time_bins, n_neurons_obs = y_train_obs.shape
n_time_bins_enc = train_data['n_time_bins_enc']

y_train_dataset = torch.utils.data.TensorDataset(y_train_obs, vel_train)
y_val_dataset = torch.utils.data.TensorDataset(y_valid_obs, vel_valid)
y_test_dataset = torch.utils.data.TensorDataset(y_test_obs, vel_test)
train_dataloader = torch.utils.data.DataLoader(y_train_dataset, batch_size=cfg.batch_sz, shuffle=True)
valid_dataloader = torch.utils.data.DataLoader(y_val_dataset, batch_size=y_valid_obs.shape[0], shuffle=False)
test_dataloader = torch.utils.data.DataLoader(y_test_dataset, batch_size=y_valid_obs.shape[0], shuffle=False)
y_train_dataset = torch.utils.data.TensorDataset(y_train_obs, vel_train)
y_val_dataset = torch.utils.data.TensorDataset(y_valid_obs, vel_valid)
y_test_dataset = torch.utils.data.TensorDataset(y_test_obs, vel_test)
train_dataloader = torch.utils.data.DataLoader(y_train_dataset, batch_size=cfg.batch_sz, shuffle=True)
valid_dataloader = torch.utils.data.DataLoader(y_val_dataset, batch_size=y_valid_obs.shape[0], shuffle=False)
test_dataloader = torch.utils.data.DataLoader(y_test_dataset, batch_size=y_valid_obs.shape[0], shuffle=False)

"""create ssm"""
ssm = create_xfads_poisson_log_link(cfg, n_neurons_obs, train_dataloader)
"""create ssm"""
ssm = create_xfads_poisson_log_link(cfg, n_neurons_obs, train_dataloader)

"""lightning"""
seq_vae = LightningMonkeyReaching(ssm, cfg, n_time_bins_enc, n_bins_bhv)
csv_logger = CSVLogger('logs/smoother/acausal/', name=f'sd_{cfg.seed}_r_y_{cfg.rank_local}_r_b_{cfg.rank_backward}', version='smoother_acausal')
ckpt_callback = ModelCheckpoint(save_top_k=3, monitor='r2_valid_enc', mode='max', dirpath='ckpts/smoother/acausal/', save_last=True,
filename='{epoch:0}_{valid_loss:0.2f}_{r2_valid_enc:0.2f}_{r2_valid_bhv:0.2f}_{valid_bps_enc:0.2f}')
"""lightning"""
seq_vae = LightningMonkeyReaching(ssm, cfg, n_time_bins_enc, n_bins_bhv)
csv_logger = CSVLogger('logs/smoother/acausal/', name=f'sd_{cfg.seed}_r_y_{cfg.rank_local}_r_b_{cfg.rank_backward}', version='smoother_acausal')
ckpt_callback = ModelCheckpoint(save_top_k=3, monitor='r2_valid_enc', mode='max', dirpath='ckpts/smoother/acausal/', save_last=True,
filename='{epoch:0}_{valid_loss:0.2f}_{r2_valid_enc:0.2f}_{r2_valid_bhv:0.2f}_{valid_bps_enc:0.2f}')

trainer = lightning.Trainer(max_epochs=cfg.n_epochs,
gradient_clip_val=1.0,
default_root_dir='lightning/',
callbacks=[ckpt_callback],
logger=csv_logger,
)
trainer = lightning.Trainer(max_epochs=cfg.n_epochs,
gradient_clip_val=1.0,
default_root_dir='lightning/',
callbacks=[ckpt_callback],
logger=csv_logger,
)

trainer.fit(model=seq_vae, train_dataloaders=train_dataloader, val_dataloaders=valid_dataloader)
torch.save(ckpt_callback.best_model_path, 'ckpts/smoother/acausal/best_model_path.pt')
trainer.test(dataloaders=test_dataloader, ckpt_path='last')
trainer.fit(model=seq_vae, train_dataloaders=train_dataloader, val_dataloaders=valid_dataloader)
torch.save(ckpt_callback.best_model_path, 'ckpts/smoother/acausal/best_model_path.pt')
trainer.test(dataloaders=test_dataloader, ckpt_path='last')


if __name__ == '__main__':
Expand Down