Project exploring machine learning approaches for automated music genre classification using the FMA dataset and metadata.
/code/: Python implementations for genre classificationBasicModels/: Baseline classification model implementations using sklearn librariesProcessing/: Data preparation scriptsCombinedFeatures/: Models using multiple feature types for experimentsSingleFeatures/: Single feature type experimentsGraphs/: Visualization generation
/fma_dataset/: Audio data and metadata/Preliminary Results/: Performance graphs and genre mappings
- Download FMA dataset and verify checksums
- Run initialPreprocessing.py from
Processing/ - Run any file in CombinedFeatures or SingleFeatures to generate results (install dependencies per file)
- Full experiment results: Google Sheets
- Technical paper:
PreliminaryResults/MusicGenreClassification.pdf
- Catherine Baker
- Thomas Davidson