Skip to content

Commit

Permalink
[BUG] Fix H100 crash/compat with Marlin (AutoGPTQ#654)
Browse files Browse the repository at this point in the history
  • Loading branch information
Qubitium authored Jun 27, 2024
2 parents ecd0c1c + 5b456a6 commit 8d8e0ea
Show file tree
Hide file tree
Showing 3 changed files with 15 additions and 38 deletions.
10 changes: 3 additions & 7 deletions auto_gptq/modeling/_base.py
Original file line number Diff line number Diff line change
Expand Up @@ -816,13 +816,9 @@ def from_quantized(
# format marlin requires marlin kernel
use_marlin = True

marlin_compatible, marlin_optimized = _validate_marlin_device_support()
if use_marlin and (not MARLIN_AVAILABLE or not marlin_compatible):
raise TypeError("use_marlin is true but Marlin is not availble due to cuda/device support.")
elif use_marlin and not marlin_optimized:
logger.info(
"use_marlin is true and your gpu device is supported but not optimized for Marlin."
)
marlin_compatible = _validate_marlin_device_support()
if use_marlin and not MARLIN_AVAILABLE:
raise TypeError("use_marlin is true but Marlin is not available due to cuda/device support.")

if not use_marlin and MARLIN_AVAILABLE:
unsupported_reason = _validate_marlin_compatibility(quantize_config)
Expand Down
21 changes: 4 additions & 17 deletions auto_gptq/utils/marlin_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -87,28 +87,15 @@ def prepare_model_for_marlin_load(


# Validate marlin support
def _validate_marlin_device_support() -> Tuple[bool, bool]:
def _validate_marlin_device_support() -> bool:
"""
Validates if the current device is compatible and optimized for Marlin.
Validates if the current device is compatible for Marlin.
ref: https://github.com/IST-DASLab/marlin?tab=readme-ov-file#requirements
Returns:
Tuple[bool, bool]: The first indicates if CUDA device is compatible for Marlin,
the second indicates if CUDA device is optimized for Marlin.
bool: indicates if CUDA device is compatible for Marlin
"""
supported = False
optimized = False

# >=hopper is compatible but not optimized
if torch.cuda.get_device_capability()[0] >= 9:
supported = True
optimized = False
# ampere and ada are supported and optimized
elif torch.cuda.get_device_capability()[0] >= 8:
supported = True
optimized = True

return supported, optimized
return torch.cuda.get_device_capability()[0] >= 8


# Adapted from https://github.com/rib-2/marlin/tree/conversion
Expand Down
22 changes: 8 additions & 14 deletions autogptq_extension/marlin/marlin_cuda_kernel.cu
Original file line number Diff line number Diff line change
Expand Up @@ -68,20 +68,14 @@ __device__ inline void cp_async4_pred(void* smem_ptr, const void* glob_ptr, bool
#endif
}

// Asynchronous global->shared copy with a chache hint indicating that the values may be evicted immediately; used for
// quantized weights B, which are only accessed precisely once and should thus not pollute the L2 cache which we need
// for inputs A and outputs C.
__device__ inline void cp_async4_stream(void* smem_ptr, const void* glob_ptr) {
// Asynchronous global->shared copy
__device__ inline void cp_async4(void *smem_ptr, const void *glob_ptr) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
const int BYTES = 16;
uint32_t smem = static_cast<uint32_t>(__cvta_generic_to_shared(smem_ptr));
asm volatile(
"{\n"
" .reg .b64 p;\n"
" createpolicy.fractional.L2::evict_first.b64 p, 1.0;"
" cp.async.cg.shared.global.L2::cache_hint [%0], [%1], %2, p;\n"
"}\n" :: "r"(smem), "l"(glob_ptr), "n"(BYTES)
);
asm volatile("{\n"
" cp.async.cg.shared.global [%0], [%1], %2;\n"
"}\n" :: "r"(smem), "l"(glob_ptr), "n"(BYTES));
#else
assert(0);
#endif
Expand Down Expand Up @@ -431,14 +425,14 @@ __global__ void Marlin(
int4* sh_b_stage = sh_b + b_sh_stage * pipe;
#pragma unroll
for (int i = 0; i < b_sh_wr_iters; i++) {
cp_async4_stream(&sh_b_stage[b_sh_wr_delta * i + b_sh_wr], B_ptr[i]);
cp_async4(&sh_b_stage[b_sh_wr_delta * i + b_sh_wr], B_ptr[i]);
B_ptr[i] += b_gl_rd_delta_o;
}
// Only fetch scales if this tile starts a new group
if (group_blocks != -1 && pipe % (group_blocks / thread_k_blocks) == 0) {
int4* sh_s_stage = sh_s + s_sh_stage * pipe;
if (s_sh_wr_pred)
cp_async4_stream(&sh_s_stage[s_sh_wr], &s[s_gl_rd]);
cp_async4(&sh_s_stage[s_sh_wr], &s[s_gl_rd]);
s_gl_rd += s_gl_rd_delta;
}
}
Expand Down Expand Up @@ -692,7 +686,7 @@ __global__ void Marlin(
// For per-column scales, we only fetch them here in the final step before write-out
if (group_blocks == -1 && last) {
if (s_sh_wr_pred)
cp_async4_stream(&sh_s[s_sh_wr], &s[s_gl_rd]);
cp_async4(&sh_s[s_sh_wr], &s[s_gl_rd]);
cp_async_fence();
}
thread_block_reduce();
Expand Down

0 comments on commit 8d8e0ea

Please sign in to comment.