-
Notifications
You must be signed in to change notification settings - Fork 470
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Fill in missing DL23 passage and DL22/23 doc conditions for doc2query (…
- Loading branch information
Showing
23 changed files
with
1,618 additions
and
30 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,106 @@ | ||
# Anserini Regressions: TREC 2022 Deep Learning Track (Document) | ||
|
||
**Models**: BM25 on complete documents with doc2query-T5 expansions | ||
|
||
This page describes experiments, integrated into Anserini's regression testing framework, on the [TREC 2022 Deep Learning Track document ranking task](https://trec.nist.gov/data/deep2022.html) using the MS MARCO V2 document corpus (with doc2query-T5 expansions). | ||
For additional instructions on working with the MS MARCO V2 document corpus, refer to [this page](../../docs/experiments-msmarco-v2.md). | ||
|
||
Note that the NIST relevance judgments provide far more relevant documents per topic, unlike the "sparse" judgments provided by Microsoft (these are sometimes called "dense" judgments to emphasize this contrast). | ||
|
||
Note that there are four different bag-of-words regression conditions for this task, and this page describes the following: | ||
|
||
+ **Indexing Condition:** each document in the MS MARCO V2 document corpus is treated as a unit of indexing | ||
+ **Expansion Condition:** doc2query-T5 | ||
|
||
The exact configurations for these regressions are stored in [this YAML file](../../src/main/resources/regression/dl22-doc-d2q-t5.yaml). | ||
Note that this page is automatically generated from [this template](../../src/main/resources/docgen/templates/dl22-doc-d2q-t5.template) as part of Anserini's regression pipeline, so do not modify this page directly; modify the template instead. | ||
|
||
From one of our Waterloo servers (e.g., `orca`), the following command will perform the complete regression, end to end: | ||
|
||
``` | ||
python src/main/python/run_regression.py --index --verify --search --regression dl22-doc-d2q-t5 | ||
``` | ||
|
||
## Indexing | ||
|
||
Typical indexing command: | ||
|
||
``` | ||
target/appassembler/bin/IndexCollection \ | ||
-collection MsMarcoV2DocCollection \ | ||
-input /path/to/msmarco-v2-doc-d2q-t5 \ | ||
-generator DefaultLuceneDocumentGenerator \ | ||
-index indexes/lucene-index.msmarco-v2-doc-d2q-t5/ \ | ||
-threads 24 -storeRaw \ | ||
>& logs/log.msmarco-v2-doc-d2q-t5 & | ||
``` | ||
|
||
The value of `-input` should be a directory containing the compressed `jsonl` files that comprise the corpus. | ||
See [this page](../../docs/experiments-msmarco-v2.md) for additional details. | ||
|
||
For additional details, see explanation of [common indexing options](../../docs/common-indexing-options.md). | ||
|
||
## Retrieval | ||
|
||
Topics and qrels are stored [here](https://github.com/castorini/anserini-tools/tree/master/topics-and-qrels), which is linked to the Anserini repo as a submodule. | ||
The regression experiments here evaluate on the 57 topics for which NIST has provided judgments as part of the [TREC 2022 Deep Learning Track](https://trec.nist.gov/data/deep2022.html). | ||
|
||
After indexing has completed, you should be able to perform retrieval as follows: | ||
|
||
``` | ||
target/appassembler/bin/SearchCollection \ | ||
-index indexes/lucene-index.msmarco-v2-doc-d2q-t5/ \ | ||
-topics tools/topics-and-qrels/topics.dl22.txt \ | ||
-topicReader TsvInt \ | ||
-output runs/run.msmarco-v2-doc-d2q-t5.bm25-default.topics.dl22.txt \ | ||
-hits 1000 -bm25 & | ||
target/appassembler/bin/SearchCollection \ | ||
-index indexes/lucene-index.msmarco-v2-doc-d2q-t5/ \ | ||
-topics tools/topics-and-qrels/topics.dl22.txt \ | ||
-topicReader TsvInt \ | ||
-output runs/run.msmarco-v2-doc-d2q-t5.bm25-default+rm3.topics.dl22.txt \ | ||
-hits 1000 -bm25 -rm3 -collection MsMarcoV2DocCollection & | ||
target/appassembler/bin/SearchCollection \ | ||
-index indexes/lucene-index.msmarco-v2-doc-d2q-t5/ \ | ||
-topics tools/topics-and-qrels/topics.dl22.txt \ | ||
-topicReader TsvInt \ | ||
-output runs/run.msmarco-v2-doc-d2q-t5.bm25-default+rocchio.topics.dl22.txt \ | ||
-hits 1000 -bm25 -rocchio -collection MsMarcoV2DocCollection & | ||
``` | ||
|
||
Evaluation can be performed using `trec_eval`: | ||
|
||
``` | ||
target/appassembler/bin/trec_eval -c -M 100 -m map tools/topics-and-qrels/qrels.dl22-doc.txt runs/run.msmarco-v2-doc-d2q-t5.bm25-default.topics.dl22.txt | ||
target/appassembler/bin/trec_eval -c -m recall.100 tools/topics-and-qrels/qrels.dl22-doc.txt runs/run.msmarco-v2-doc-d2q-t5.bm25-default.topics.dl22.txt | ||
target/appassembler/bin/trec_eval -c -m recall.1000 tools/topics-and-qrels/qrels.dl22-doc.txt runs/run.msmarco-v2-doc-d2q-t5.bm25-default.topics.dl22.txt | ||
target/appassembler/bin/trec_eval -c -M 100 -m recip_rank -c -m ndcg_cut.10 tools/topics-and-qrels/qrels.dl22-doc.txt runs/run.msmarco-v2-doc-d2q-t5.bm25-default.topics.dl22.txt | ||
target/appassembler/bin/trec_eval -c -M 100 -m map tools/topics-and-qrels/qrels.dl22-doc.txt runs/run.msmarco-v2-doc-d2q-t5.bm25-default+rm3.topics.dl22.txt | ||
target/appassembler/bin/trec_eval -c -m recall.100 tools/topics-and-qrels/qrels.dl22-doc.txt runs/run.msmarco-v2-doc-d2q-t5.bm25-default+rm3.topics.dl22.txt | ||
target/appassembler/bin/trec_eval -c -m recall.1000 tools/topics-and-qrels/qrels.dl22-doc.txt runs/run.msmarco-v2-doc-d2q-t5.bm25-default+rm3.topics.dl22.txt | ||
target/appassembler/bin/trec_eval -c -M 100 -m recip_rank -c -m ndcg_cut.10 tools/topics-and-qrels/qrels.dl22-doc.txt runs/run.msmarco-v2-doc-d2q-t5.bm25-default+rm3.topics.dl22.txt | ||
target/appassembler/bin/trec_eval -c -M 100 -m map tools/topics-and-qrels/qrels.dl22-doc.txt runs/run.msmarco-v2-doc-d2q-t5.bm25-default+rocchio.topics.dl22.txt | ||
target/appassembler/bin/trec_eval -c -m recall.100 tools/topics-and-qrels/qrels.dl22-doc.txt runs/run.msmarco-v2-doc-d2q-t5.bm25-default+rocchio.topics.dl22.txt | ||
target/appassembler/bin/trec_eval -c -m recall.1000 tools/topics-and-qrels/qrels.dl22-doc.txt runs/run.msmarco-v2-doc-d2q-t5.bm25-default+rocchio.topics.dl22.txt | ||
target/appassembler/bin/trec_eval -c -M 100 -m recip_rank -c -m ndcg_cut.10 tools/topics-and-qrels/qrels.dl22-doc.txt runs/run.msmarco-v2-doc-d2q-t5.bm25-default+rocchio.topics.dl22.txt | ||
``` | ||
|
||
## Effectiveness | ||
|
||
With the above commands, you should be able to reproduce the following results: | ||
|
||
| **MAP@100** | **BM25 (default)**| **+RM3** | **+Rocchio**| | ||
|:-------------------------------------------------------------------------------------------------------------|-----------|-----------|-----------| | ||
| [DL22 (Doc)](https://microsoft.github.io/msmarco/TREC-Deep-Learning) | 0.0977 | 0.0904 | 0.0944 | | ||
| **MRR@100** | **BM25 (default)**| **+RM3** | **+Rocchio**| | ||
| [DL22 (Doc)](https://microsoft.github.io/msmarco/TREC-Deep-Learning) | 0.6666 | 0.5657 | 0.5700 | | ||
| **nDCG@10** | **BM25 (default)**| **+RM3** | **+Rocchio**| | ||
| [DL22 (Doc)](https://microsoft.github.io/msmarco/TREC-Deep-Learning) | 0.3539 | 0.2758 | 0.2797 | | ||
| **R@100** | **BM25 (default)**| **+RM3** | **+Rocchio**| | ||
| [DL22 (Doc)](https://microsoft.github.io/msmarco/TREC-Deep-Learning) | 0.2041 | 0.1957 | 0.2022 | | ||
| **R@1000** | **BM25 (default)**| **+RM3** | **+Rocchio**| | ||
| [DL22 (Doc)](https://microsoft.github.io/msmarco/TREC-Deep-Learning) | 0.4301 | 0.4263 | 0.4338 | |
106 changes: 106 additions & 0 deletions
106
docs/regressions/regressions-dl22-doc-segmented-d2q-t5.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,106 @@ | ||
# Anserini Regressions: TREC 2022 Deep Learning Track (Document) | ||
|
||
**Models**: BM25 on segmented documents with doc2query-T5 expansions | ||
|
||
This page describes experiments, integrated into Anserini's regression testing framework, on the [TREC 2022 Deep Learning Track document ranking task](https://trec.nist.gov/data/deep2022.html) using the MS MARCO V2 _segmented_ document corpus (with doc2query-T5 expansions). | ||
For additional instructions on working with the MS MARCO V2 document corpus, refer to [this page](../../docs/experiments-msmarco-v2.md). | ||
|
||
Note that the NIST relevance judgments provide far more relevant documents per topic, unlike the "sparse" judgments provided by Microsoft (these are sometimes called "dense" judgments to emphasize this contrast). | ||
|
||
Note that there are four different bag-of-words regression conditions for this task, and this page describes the following: | ||
|
||
+ **Indexing Condition:** each segment in the MS MARCO V2 _segmented_ document corpus is treated as a unit of indexing | ||
+ **Expansion Condition:** doc2query-T5 | ||
|
||
The exact configurations for these regressions are stored in [this YAML file](../../src/main/resources/regression/dl22-doc-segmented-d2q-t5.yaml). | ||
Note that this page is automatically generated from [this template](../../src/main/resources/docgen/templates/dl22-doc-segmented-d2q-t5.template) as part of Anserini's regression pipeline, so do not modify this page directly; modify the template instead. | ||
|
||
From one of our Waterloo servers (e.g., `orca`), the following command will perform the complete regression, end to end: | ||
|
||
``` | ||
python src/main/python/run_regression.py --index --verify --search --regression dl22-doc-segmented-d2q-t5 | ||
``` | ||
|
||
## Indexing | ||
|
||
Typical indexing command: | ||
|
||
``` | ||
target/appassembler/bin/IndexCollection \ | ||
-collection MsMarcoV2DocCollection \ | ||
-input /path/to/msmarco-v2-doc-segmented-d2q-t5 \ | ||
-generator DefaultLuceneDocumentGenerator \ | ||
-index indexes/lucene-index.msmarco-v2-doc-segmented-d2q-t5/ \ | ||
-threads 24 -storeRaw \ | ||
>& logs/log.msmarco-v2-doc-segmented-d2q-t5 & | ||
``` | ||
|
||
The value of `-input` should be a directory containing the compressed `jsonl` files that comprise the corpus. | ||
See [this page](../../docs/experiments-msmarco-v2.md) for additional details. | ||
|
||
For additional details, see explanation of [common indexing options](../../docs/common-indexing-options.md). | ||
|
||
## Retrieval | ||
|
||
Topics and qrels are stored [here](https://github.com/castorini/anserini-tools/tree/master/topics-and-qrels), which is linked to the Anserini repo as a submodule. | ||
The regression experiments here evaluate on the 57 topics for which NIST has provided judgments as part of the [TREC 2022 Deep Learning Track](https://trec.nist.gov/data/deep2022.html). | ||
|
||
After indexing has completed, you should be able to perform retrieval as follows: | ||
|
||
``` | ||
target/appassembler/bin/SearchCollection \ | ||
-index indexes/lucene-index.msmarco-v2-doc-segmented-d2q-t5/ \ | ||
-topics tools/topics-and-qrels/topics.dl22.txt \ | ||
-topicReader TsvInt \ | ||
-output runs/run.msmarco-v2-doc-segmented-d2q-t5.bm25-default.topics.dl22.txt \ | ||
-hits 10000 -selectMaxPassage -selectMaxPassage.delimiter "#" -selectMaxPassage.hits 1000 -bm25 & | ||
target/appassembler/bin/SearchCollection \ | ||
-index indexes/lucene-index.msmarco-v2-doc-segmented-d2q-t5/ \ | ||
-topics tools/topics-and-qrels/topics.dl22.txt \ | ||
-topicReader TsvInt \ | ||
-output runs/run.msmarco-v2-doc-segmented-d2q-t5.bm25-default+rm3.topics.dl22.txt \ | ||
-bm25 -rm3 -collection MsMarcoV2DocCollection -hits 10000 -selectMaxPassage -selectMaxPassage.delimiter "#" -selectMaxPassage.hits 1000 & | ||
target/appassembler/bin/SearchCollection \ | ||
-index indexes/lucene-index.msmarco-v2-doc-segmented-d2q-t5/ \ | ||
-topics tools/topics-and-qrels/topics.dl22.txt \ | ||
-topicReader TsvInt \ | ||
-output runs/run.msmarco-v2-doc-segmented-d2q-t5.bm25-default+rocchio.topics.dl22.txt \ | ||
-bm25 -rocchio -collection MsMarcoV2DocCollection -hits 10000 -selectMaxPassage -selectMaxPassage.delimiter "#" -selectMaxPassage.hits 1000 & | ||
``` | ||
|
||
Evaluation can be performed using `trec_eval`: | ||
|
||
``` | ||
target/appassembler/bin/trec_eval -c -M 100 -m map tools/topics-and-qrels/qrels.dl22-doc.txt runs/run.msmarco-v2-doc-segmented-d2q-t5.bm25-default.topics.dl22.txt | ||
target/appassembler/bin/trec_eval -c -m recall.100 tools/topics-and-qrels/qrels.dl22-doc.txt runs/run.msmarco-v2-doc-segmented-d2q-t5.bm25-default.topics.dl22.txt | ||
target/appassembler/bin/trec_eval -c -m recall.1000 tools/topics-and-qrels/qrels.dl22-doc.txt runs/run.msmarco-v2-doc-segmented-d2q-t5.bm25-default.topics.dl22.txt | ||
target/appassembler/bin/trec_eval -c -M 100 -m recip_rank -c -m ndcg_cut.10 tools/topics-and-qrels/qrels.dl22-doc.txt runs/run.msmarco-v2-doc-segmented-d2q-t5.bm25-default.topics.dl22.txt | ||
target/appassembler/bin/trec_eval -c -M 100 -m map tools/topics-and-qrels/qrels.dl22-doc.txt runs/run.msmarco-v2-doc-segmented-d2q-t5.bm25-default+rm3.topics.dl22.txt | ||
target/appassembler/bin/trec_eval -c -m recall.100 tools/topics-and-qrels/qrels.dl22-doc.txt runs/run.msmarco-v2-doc-segmented-d2q-t5.bm25-default+rm3.topics.dl22.txt | ||
target/appassembler/bin/trec_eval -c -m recall.1000 tools/topics-and-qrels/qrels.dl22-doc.txt runs/run.msmarco-v2-doc-segmented-d2q-t5.bm25-default+rm3.topics.dl22.txt | ||
target/appassembler/bin/trec_eval -c -M 100 -m recip_rank -c -m ndcg_cut.10 tools/topics-and-qrels/qrels.dl22-doc.txt runs/run.msmarco-v2-doc-segmented-d2q-t5.bm25-default+rm3.topics.dl22.txt | ||
target/appassembler/bin/trec_eval -c -M 100 -m map tools/topics-and-qrels/qrels.dl22-doc.txt runs/run.msmarco-v2-doc-segmented-d2q-t5.bm25-default+rocchio.topics.dl22.txt | ||
target/appassembler/bin/trec_eval -c -m recall.100 tools/topics-and-qrels/qrels.dl22-doc.txt runs/run.msmarco-v2-doc-segmented-d2q-t5.bm25-default+rocchio.topics.dl22.txt | ||
target/appassembler/bin/trec_eval -c -m recall.1000 tools/topics-and-qrels/qrels.dl22-doc.txt runs/run.msmarco-v2-doc-segmented-d2q-t5.bm25-default+rocchio.topics.dl22.txt | ||
target/appassembler/bin/trec_eval -c -M 100 -m recip_rank -c -m ndcg_cut.10 tools/topics-and-qrels/qrels.dl22-doc.txt runs/run.msmarco-v2-doc-segmented-d2q-t5.bm25-default+rocchio.topics.dl22.txt | ||
``` | ||
|
||
## Effectiveness | ||
|
||
With the above commands, you should be able to reproduce the following results: | ||
|
||
| **MAP@100** | **BM25 (default)**| **+RM3** | **+Rocchio**| | ||
|:-------------------------------------------------------------------------------------------------------------|-----------|-----------|-----------| | ||
| [DL22 (Doc)](https://microsoft.github.io/msmarco/TREC-Deep-Learning) | 0.1203 | 0.1319 | 0.1349 | | ||
| **MRR@100** | **BM25 (default)**| **+RM3** | **+Rocchio**| | ||
| [DL22 (Doc)](https://microsoft.github.io/msmarco/TREC-Deep-Learning) | 0.7367 | 0.7035 | 0.7226 | | ||
| **nDCG@10** | **BM25 (default)**| **+RM3** | **+Rocchio**| | ||
| [DL22 (Doc)](https://microsoft.github.io/msmarco/TREC-Deep-Learning) | 0.3975 | 0.3912 | 0.4012 | | ||
| **R@100** | **BM25 (default)**| **+RM3** | **+Rocchio**| | ||
| [DL22 (Doc)](https://microsoft.github.io/msmarco/TREC-Deep-Learning) | 0.2441 | 0.2467 | 0.2499 | | ||
| **R@1000** | **BM25 (default)**| **+RM3** | **+Rocchio**| | ||
| [DL22 (Doc)](https://microsoft.github.io/msmarco/TREC-Deep-Learning) | 0.4984 | 0.5188 | 0.5320 | |
Oops, something went wrong.