Skip to content

Commit

Permalink
Fill in missing DL23 passage and DL22/23 doc conditions for doc2query (
Browse files Browse the repository at this point in the history
  • Loading branch information
lintool authored Mar 20, 2024
1 parent fd05395 commit d48a40f
Show file tree
Hide file tree
Showing 23 changed files with 1,618 additions and 30 deletions.
48 changes: 24 additions & 24 deletions README.md

Large diffs are not rendered by default.

6 changes: 6 additions & 0 deletions docs/regressions.md
Original file line number Diff line number Diff line change
Expand Up @@ -209,13 +209,19 @@ nohup python src/main/python/run_regression.py --index --verify --search --regre
nohup python src/main/python/run_regression.py --index --verify --search --regression dl22-passage-splade-pp-sd >& logs/log.dl22-passage-splade-pp-sd &

nohup python src/main/python/run_regression.py --index --verify --search --regression dl22-doc >& logs/log.dl22-doc &
nohup python src/main/python/run_regression.py --index --verify --search --regression dl22-doc-d2q-t5 >& logs/log.dl22-doc-d2q-t5 &
nohup python src/main/python/run_regression.py --index --verify --search --regression dl22-doc-segmented >& logs/log.dl22-doc-segmented &
nohup python src/main/python/run_regression.py --index --verify --search --regression dl22-doc-segmented-d2q-t5 >& logs/log.dl22-doc-segmented-d2q-t5 &

nohup python src/main/python/run_regression.py --index --verify --search --regression dl23-passage >& logs/log.dl23-passage &
nohup python src/main/python/run_regression.py --index --verify --search --regression dl23-passage-d2q-t5 >& logs/log.dl23-passage-d2q-t5 &
nohup python src/main/python/run_regression.py --index --verify --search --regression dl23-passage-augmented >& logs/log.dl23-passage-augmented &
nohup python src/main/python/run_regression.py --index --verify --search --regression dl23-passage-augmented-d2q-t5 >& logs/log.dl23-passage-augmented-d2q-t5 &

nohup python src/main/python/run_regression.py --index --verify --search --regression dl23-doc >& logs/log.dl23-doc &
nohup python src/main/python/run_regression.py --index --verify --search --regression dl23-doc-d2q-t5 >& logs/log.dl23-doc-d2q-t5 &
nohup python src/main/python/run_regression.py --index --verify --search --regression dl23-doc-segmented >& logs/log.dl23-doc-segmented &
nohup python src/main/python/run_regression.py --index --verify --search --regression dl23-doc-segmented-d2q-t5 >& logs/log.dl23-doc-segmented-d2q-t5 &
```

</details>
Expand Down
106 changes: 106 additions & 0 deletions docs/regressions/regressions-dl22-doc-d2q-t5.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,106 @@
# Anserini Regressions: TREC 2022 Deep Learning Track (Document)

**Models**: BM25 on complete documents with doc2query-T5 expansions

This page describes experiments, integrated into Anserini's regression testing framework, on the [TREC 2022 Deep Learning Track document ranking task](https://trec.nist.gov/data/deep2022.html) using the MS MARCO V2 document corpus (with doc2query-T5 expansions).
For additional instructions on working with the MS MARCO V2 document corpus, refer to [this page](../../docs/experiments-msmarco-v2.md).

Note that the NIST relevance judgments provide far more relevant documents per topic, unlike the "sparse" judgments provided by Microsoft (these are sometimes called "dense" judgments to emphasize this contrast).

Note that there are four different bag-of-words regression conditions for this task, and this page describes the following:

+ **Indexing Condition:** each document in the MS MARCO V2 document corpus is treated as a unit of indexing
+ **Expansion Condition:** doc2query-T5

The exact configurations for these regressions are stored in [this YAML file](../../src/main/resources/regression/dl22-doc-d2q-t5.yaml).
Note that this page is automatically generated from [this template](../../src/main/resources/docgen/templates/dl22-doc-d2q-t5.template) as part of Anserini's regression pipeline, so do not modify this page directly; modify the template instead.

From one of our Waterloo servers (e.g., `orca`), the following command will perform the complete regression, end to end:

```
python src/main/python/run_regression.py --index --verify --search --regression dl22-doc-d2q-t5
```

## Indexing

Typical indexing command:

```
target/appassembler/bin/IndexCollection \
-collection MsMarcoV2DocCollection \
-input /path/to/msmarco-v2-doc-d2q-t5 \
-generator DefaultLuceneDocumentGenerator \
-index indexes/lucene-index.msmarco-v2-doc-d2q-t5/ \
-threads 24 -storeRaw \
>& logs/log.msmarco-v2-doc-d2q-t5 &
```

The value of `-input` should be a directory containing the compressed `jsonl` files that comprise the corpus.
See [this page](../../docs/experiments-msmarco-v2.md) for additional details.

For additional details, see explanation of [common indexing options](../../docs/common-indexing-options.md).

## Retrieval

Topics and qrels are stored [here](https://github.com/castorini/anserini-tools/tree/master/topics-and-qrels), which is linked to the Anserini repo as a submodule.
The regression experiments here evaluate on the 57 topics for which NIST has provided judgments as part of the [TREC 2022 Deep Learning Track](https://trec.nist.gov/data/deep2022.html).

After indexing has completed, you should be able to perform retrieval as follows:

```
target/appassembler/bin/SearchCollection \
-index indexes/lucene-index.msmarco-v2-doc-d2q-t5/ \
-topics tools/topics-and-qrels/topics.dl22.txt \
-topicReader TsvInt \
-output runs/run.msmarco-v2-doc-d2q-t5.bm25-default.topics.dl22.txt \
-hits 1000 -bm25 &
target/appassembler/bin/SearchCollection \
-index indexes/lucene-index.msmarco-v2-doc-d2q-t5/ \
-topics tools/topics-and-qrels/topics.dl22.txt \
-topicReader TsvInt \
-output runs/run.msmarco-v2-doc-d2q-t5.bm25-default+rm3.topics.dl22.txt \
-hits 1000 -bm25 -rm3 -collection MsMarcoV2DocCollection &
target/appassembler/bin/SearchCollection \
-index indexes/lucene-index.msmarco-v2-doc-d2q-t5/ \
-topics tools/topics-and-qrels/topics.dl22.txt \
-topicReader TsvInt \
-output runs/run.msmarco-v2-doc-d2q-t5.bm25-default+rocchio.topics.dl22.txt \
-hits 1000 -bm25 -rocchio -collection MsMarcoV2DocCollection &
```

Evaluation can be performed using `trec_eval`:

```
target/appassembler/bin/trec_eval -c -M 100 -m map tools/topics-and-qrels/qrels.dl22-doc.txt runs/run.msmarco-v2-doc-d2q-t5.bm25-default.topics.dl22.txt
target/appassembler/bin/trec_eval -c -m recall.100 tools/topics-and-qrels/qrels.dl22-doc.txt runs/run.msmarco-v2-doc-d2q-t5.bm25-default.topics.dl22.txt
target/appassembler/bin/trec_eval -c -m recall.1000 tools/topics-and-qrels/qrels.dl22-doc.txt runs/run.msmarco-v2-doc-d2q-t5.bm25-default.topics.dl22.txt
target/appassembler/bin/trec_eval -c -M 100 -m recip_rank -c -m ndcg_cut.10 tools/topics-and-qrels/qrels.dl22-doc.txt runs/run.msmarco-v2-doc-d2q-t5.bm25-default.topics.dl22.txt
target/appassembler/bin/trec_eval -c -M 100 -m map tools/topics-and-qrels/qrels.dl22-doc.txt runs/run.msmarco-v2-doc-d2q-t5.bm25-default+rm3.topics.dl22.txt
target/appassembler/bin/trec_eval -c -m recall.100 tools/topics-and-qrels/qrels.dl22-doc.txt runs/run.msmarco-v2-doc-d2q-t5.bm25-default+rm3.topics.dl22.txt
target/appassembler/bin/trec_eval -c -m recall.1000 tools/topics-and-qrels/qrels.dl22-doc.txt runs/run.msmarco-v2-doc-d2q-t5.bm25-default+rm3.topics.dl22.txt
target/appassembler/bin/trec_eval -c -M 100 -m recip_rank -c -m ndcg_cut.10 tools/topics-and-qrels/qrels.dl22-doc.txt runs/run.msmarco-v2-doc-d2q-t5.bm25-default+rm3.topics.dl22.txt
target/appassembler/bin/trec_eval -c -M 100 -m map tools/topics-and-qrels/qrels.dl22-doc.txt runs/run.msmarco-v2-doc-d2q-t5.bm25-default+rocchio.topics.dl22.txt
target/appassembler/bin/trec_eval -c -m recall.100 tools/topics-and-qrels/qrels.dl22-doc.txt runs/run.msmarco-v2-doc-d2q-t5.bm25-default+rocchio.topics.dl22.txt
target/appassembler/bin/trec_eval -c -m recall.1000 tools/topics-and-qrels/qrels.dl22-doc.txt runs/run.msmarco-v2-doc-d2q-t5.bm25-default+rocchio.topics.dl22.txt
target/appassembler/bin/trec_eval -c -M 100 -m recip_rank -c -m ndcg_cut.10 tools/topics-and-qrels/qrels.dl22-doc.txt runs/run.msmarco-v2-doc-d2q-t5.bm25-default+rocchio.topics.dl22.txt
```

## Effectiveness

With the above commands, you should be able to reproduce the following results:

| **MAP@100** | **BM25 (default)**| **+RM3** | **+Rocchio**|
|:-------------------------------------------------------------------------------------------------------------|-----------|-----------|-----------|
| [DL22 (Doc)](https://microsoft.github.io/msmarco/TREC-Deep-Learning) | 0.0977 | 0.0904 | 0.0944 |
| **MRR@100** | **BM25 (default)**| **+RM3** | **+Rocchio**|
| [DL22 (Doc)](https://microsoft.github.io/msmarco/TREC-Deep-Learning) | 0.6666 | 0.5657 | 0.5700 |
| **nDCG@10** | **BM25 (default)**| **+RM3** | **+Rocchio**|
| [DL22 (Doc)](https://microsoft.github.io/msmarco/TREC-Deep-Learning) | 0.3539 | 0.2758 | 0.2797 |
| **R@100** | **BM25 (default)**| **+RM3** | **+Rocchio**|
| [DL22 (Doc)](https://microsoft.github.io/msmarco/TREC-Deep-Learning) | 0.2041 | 0.1957 | 0.2022 |
| **R@1000** | **BM25 (default)**| **+RM3** | **+Rocchio**|
| [DL22 (Doc)](https://microsoft.github.io/msmarco/TREC-Deep-Learning) | 0.4301 | 0.4263 | 0.4338 |
106 changes: 106 additions & 0 deletions docs/regressions/regressions-dl22-doc-segmented-d2q-t5.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,106 @@
# Anserini Regressions: TREC 2022 Deep Learning Track (Document)

**Models**: BM25 on segmented documents with doc2query-T5 expansions

This page describes experiments, integrated into Anserini's regression testing framework, on the [TREC 2022 Deep Learning Track document ranking task](https://trec.nist.gov/data/deep2022.html) using the MS MARCO V2 _segmented_ document corpus (with doc2query-T5 expansions).
For additional instructions on working with the MS MARCO V2 document corpus, refer to [this page](../../docs/experiments-msmarco-v2.md).

Note that the NIST relevance judgments provide far more relevant documents per topic, unlike the "sparse" judgments provided by Microsoft (these are sometimes called "dense" judgments to emphasize this contrast).

Note that there are four different bag-of-words regression conditions for this task, and this page describes the following:

+ **Indexing Condition:** each segment in the MS MARCO V2 _segmented_ document corpus is treated as a unit of indexing
+ **Expansion Condition:** doc2query-T5

The exact configurations for these regressions are stored in [this YAML file](../../src/main/resources/regression/dl22-doc-segmented-d2q-t5.yaml).
Note that this page is automatically generated from [this template](../../src/main/resources/docgen/templates/dl22-doc-segmented-d2q-t5.template) as part of Anserini's regression pipeline, so do not modify this page directly; modify the template instead.

From one of our Waterloo servers (e.g., `orca`), the following command will perform the complete regression, end to end:

```
python src/main/python/run_regression.py --index --verify --search --regression dl22-doc-segmented-d2q-t5
```

## Indexing

Typical indexing command:

```
target/appassembler/bin/IndexCollection \
-collection MsMarcoV2DocCollection \
-input /path/to/msmarco-v2-doc-segmented-d2q-t5 \
-generator DefaultLuceneDocumentGenerator \
-index indexes/lucene-index.msmarco-v2-doc-segmented-d2q-t5/ \
-threads 24 -storeRaw \
>& logs/log.msmarco-v2-doc-segmented-d2q-t5 &
```

The value of `-input` should be a directory containing the compressed `jsonl` files that comprise the corpus.
See [this page](../../docs/experiments-msmarco-v2.md) for additional details.

For additional details, see explanation of [common indexing options](../../docs/common-indexing-options.md).

## Retrieval

Topics and qrels are stored [here](https://github.com/castorini/anserini-tools/tree/master/topics-and-qrels), which is linked to the Anserini repo as a submodule.
The regression experiments here evaluate on the 57 topics for which NIST has provided judgments as part of the [TREC 2022 Deep Learning Track](https://trec.nist.gov/data/deep2022.html).

After indexing has completed, you should be able to perform retrieval as follows:

```
target/appassembler/bin/SearchCollection \
-index indexes/lucene-index.msmarco-v2-doc-segmented-d2q-t5/ \
-topics tools/topics-and-qrels/topics.dl22.txt \
-topicReader TsvInt \
-output runs/run.msmarco-v2-doc-segmented-d2q-t5.bm25-default.topics.dl22.txt \
-hits 10000 -selectMaxPassage -selectMaxPassage.delimiter "#" -selectMaxPassage.hits 1000 -bm25 &
target/appassembler/bin/SearchCollection \
-index indexes/lucene-index.msmarco-v2-doc-segmented-d2q-t5/ \
-topics tools/topics-and-qrels/topics.dl22.txt \
-topicReader TsvInt \
-output runs/run.msmarco-v2-doc-segmented-d2q-t5.bm25-default+rm3.topics.dl22.txt \
-bm25 -rm3 -collection MsMarcoV2DocCollection -hits 10000 -selectMaxPassage -selectMaxPassage.delimiter "#" -selectMaxPassage.hits 1000 &
target/appassembler/bin/SearchCollection \
-index indexes/lucene-index.msmarco-v2-doc-segmented-d2q-t5/ \
-topics tools/topics-and-qrels/topics.dl22.txt \
-topicReader TsvInt \
-output runs/run.msmarco-v2-doc-segmented-d2q-t5.bm25-default+rocchio.topics.dl22.txt \
-bm25 -rocchio -collection MsMarcoV2DocCollection -hits 10000 -selectMaxPassage -selectMaxPassage.delimiter "#" -selectMaxPassage.hits 1000 &
```

Evaluation can be performed using `trec_eval`:

```
target/appassembler/bin/trec_eval -c -M 100 -m map tools/topics-and-qrels/qrels.dl22-doc.txt runs/run.msmarco-v2-doc-segmented-d2q-t5.bm25-default.topics.dl22.txt
target/appassembler/bin/trec_eval -c -m recall.100 tools/topics-and-qrels/qrels.dl22-doc.txt runs/run.msmarco-v2-doc-segmented-d2q-t5.bm25-default.topics.dl22.txt
target/appassembler/bin/trec_eval -c -m recall.1000 tools/topics-and-qrels/qrels.dl22-doc.txt runs/run.msmarco-v2-doc-segmented-d2q-t5.bm25-default.topics.dl22.txt
target/appassembler/bin/trec_eval -c -M 100 -m recip_rank -c -m ndcg_cut.10 tools/topics-and-qrels/qrels.dl22-doc.txt runs/run.msmarco-v2-doc-segmented-d2q-t5.bm25-default.topics.dl22.txt
target/appassembler/bin/trec_eval -c -M 100 -m map tools/topics-and-qrels/qrels.dl22-doc.txt runs/run.msmarco-v2-doc-segmented-d2q-t5.bm25-default+rm3.topics.dl22.txt
target/appassembler/bin/trec_eval -c -m recall.100 tools/topics-and-qrels/qrels.dl22-doc.txt runs/run.msmarco-v2-doc-segmented-d2q-t5.bm25-default+rm3.topics.dl22.txt
target/appassembler/bin/trec_eval -c -m recall.1000 tools/topics-and-qrels/qrels.dl22-doc.txt runs/run.msmarco-v2-doc-segmented-d2q-t5.bm25-default+rm3.topics.dl22.txt
target/appassembler/bin/trec_eval -c -M 100 -m recip_rank -c -m ndcg_cut.10 tools/topics-and-qrels/qrels.dl22-doc.txt runs/run.msmarco-v2-doc-segmented-d2q-t5.bm25-default+rm3.topics.dl22.txt
target/appassembler/bin/trec_eval -c -M 100 -m map tools/topics-and-qrels/qrels.dl22-doc.txt runs/run.msmarco-v2-doc-segmented-d2q-t5.bm25-default+rocchio.topics.dl22.txt
target/appassembler/bin/trec_eval -c -m recall.100 tools/topics-and-qrels/qrels.dl22-doc.txt runs/run.msmarco-v2-doc-segmented-d2q-t5.bm25-default+rocchio.topics.dl22.txt
target/appassembler/bin/trec_eval -c -m recall.1000 tools/topics-and-qrels/qrels.dl22-doc.txt runs/run.msmarco-v2-doc-segmented-d2q-t5.bm25-default+rocchio.topics.dl22.txt
target/appassembler/bin/trec_eval -c -M 100 -m recip_rank -c -m ndcg_cut.10 tools/topics-and-qrels/qrels.dl22-doc.txt runs/run.msmarco-v2-doc-segmented-d2q-t5.bm25-default+rocchio.topics.dl22.txt
```

## Effectiveness

With the above commands, you should be able to reproduce the following results:

| **MAP@100** | **BM25 (default)**| **+RM3** | **+Rocchio**|
|:-------------------------------------------------------------------------------------------------------------|-----------|-----------|-----------|
| [DL22 (Doc)](https://microsoft.github.io/msmarco/TREC-Deep-Learning) | 0.1203 | 0.1319 | 0.1349 |
| **MRR@100** | **BM25 (default)**| **+RM3** | **+Rocchio**|
| [DL22 (Doc)](https://microsoft.github.io/msmarco/TREC-Deep-Learning) | 0.7367 | 0.7035 | 0.7226 |
| **nDCG@10** | **BM25 (default)**| **+RM3** | **+Rocchio**|
| [DL22 (Doc)](https://microsoft.github.io/msmarco/TREC-Deep-Learning) | 0.3975 | 0.3912 | 0.4012 |
| **R@100** | **BM25 (default)**| **+RM3** | **+Rocchio**|
| [DL22 (Doc)](https://microsoft.github.io/msmarco/TREC-Deep-Learning) | 0.2441 | 0.2467 | 0.2499 |
| **R@1000** | **BM25 (default)**| **+RM3** | **+Rocchio**|
| [DL22 (Doc)](https://microsoft.github.io/msmarco/TREC-Deep-Learning) | 0.4984 | 0.5188 | 0.5320 |
Loading

0 comments on commit d48a40f

Please sign in to comment.