A little prototype for a Feynman-Kac based Poisson solver for my bachelor thesis.
Assuming you have python and pip run first clone then in the root dir.
python -m venv venv
source venv/bin/activate
pip install -r requirements.txt
Run the python main.py
in the src folder and any number of the optional arguments:
-e, --epsilon
defaults to .01 and sets the standard deviation that you want to reach-d, --dt0
defaults to .01 and sets the timestep at level 0 (or just the timestep for non-mlmc simulations)-x, --x
defaults to .5 the starting x position-y, --y
defaults to .5 the starting y position--non_homogeneous
defaults to false uses the non-homogeneous test function-s, --standard_mc
defaults to false if set runs non-mlmc simulation-N, --N_samples
defaults to 256000 the number of samples for non-mlmc runs-w, --plot_walk
defaults to false if set plots two correlated random walks-d, --debug
defaults to false if set activates some more print statements
enter the virtual environment and start your jupyter lab or notebook from there