forked from radekd91/emoca
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
254 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,254 @@ | ||
import numpy as np | ||
import torch | ||
|
||
from gdl.utils.MediaPipeLandmarkLists import left_eye_landmark_indices, right_eye_landmark_indices, mouth_landmark_indices | ||
|
||
## MEDIAPIPE LANDMARK DESCRIPTIONS | ||
|
||
# LEFT EYE | ||
# perspective of the landmarked person | ||
LEFT_EYE_LEFT_CORNER = 263 | ||
LEFT_EYE_RIGHT_CORNER = 362 | ||
# the upper and lower eyelid points are in correspondences, ordered from right to left (perspective of the landmarked person) | ||
LEFT_UPPER_EYELID_INDICES = [398, 384, 385, 386, 387, 388, 466] | ||
LEFT_LOWER_EYELID_INDICES = [382, 381, 380, 374, 373, 390, 249] | ||
|
||
LEFT_UPPER_EYEBROW_INDICES = [336, 296, 334, 293, 300] | ||
LEFT_LOWER_EYEBROW_INDICES = [285, 295, 282, 283, 276] | ||
|
||
# RIGHT EYE | ||
# perspective of the landmarked person | ||
RIGHT_EYE_LEFT_CORNER = 133 | ||
RIGHT_EYE_RIGHT_CORNER = 33 | ||
# the upper and lower eyelid points are in correspondences, ordered from right to left (perspective of the landmarked person) | ||
RIGHT_UPPER_EYELID_INDICES = [246, 161, 160, 159, 158, 157, 173] | ||
RIGHT_LOWER_EYELID_INDICES = [7 , 163, 144, 145, 153, 154, 155] | ||
|
||
RIGHT_UPPER_EYEBROW_INDICES = [ 70, 63, 105, 66, 107] | ||
RIGHT_LOWER_EYEBROW_INDICES = [ 46, 53, 52, 65, 55] | ||
|
||
# MOUTH | ||
LEFT_INNER_LIP_CORNER = 308 | ||
LEFT_OUTTER_LIP_CORNER = 291 | ||
RIGHT_INNER_LIP_CORNER = 78 | ||
RIGHT_OUTTER_LIP_CORNER = 61 | ||
# from right to left, the upper and lower are in correspondence | ||
UPPER_INNER_LIP_LINE = [191, 80, 81 , 82 , 13 , 312, 311, 310, 415] | ||
LOWER_INNER_LIP_LINE = [ 95, 88, 178, 87 , 14 , 317, 402, 318, 324] | ||
# from right to left, the upper and lower are in correspondence | ||
UPPER_OUTTER_LIP_LINE = [185, 40, 39, 37, 0, 267, 269, 270, 409] | ||
LOWER_OUTTER_LIP_LINE = [146, 91, 181, 84, 17, 314, 405, 321, 375] | ||
|
||
# NOSE | ||
# from up (between the eyes) downards (nose tip) | ||
VERTICAL_NOSE_LINE = [168, 6, 197, 195, 5, 4] | ||
# from right (next to the right nostril, just under the right nostril , under the nose) to left (landmarked person perspective) | ||
HORIZONTAL_NOSE_LINE = [129, 98, 97, 2, 326, 327, 358] | ||
|
||
|
||
# COMBINED LISTS | ||
UPPER_EYELIDS = np.array(sorted(LEFT_UPPER_EYELID_INDICES + RIGHT_UPPER_EYELID_INDICES), dtype=np.int64) | ||
LOWER_EYELIDS = np.array(sorted(LEFT_LOWER_EYELID_INDICES + RIGHT_LOWER_EYELID_INDICES), dtype=np.int64) | ||
UPPER_EYELIDS_TORCH = torch.from_numpy(UPPER_EYELIDS).long() | ||
LOWER_EYELIDS_TORCH = torch.from_numpy(LOWER_EYELIDS).long() | ||
|
||
EMBEDDING_INDICES = [276, 282, 283, 285, 293, 295, 296, 300, 334, 336, 46, 52, 53, | ||
55, 63, 65, 66, 70, 105, 107, 249, 263, 362, 373, 374, 380, | ||
381, 382, 384, 385, 386, 387, 388, 390, 398, 466, 7, 33, 133, | ||
144, 145, 153, 154, 155, 157, 158, 159, 160, 161, 163, 173, 246, | ||
168, 6, 197, 195, 5, 4, 129, 98, 97, 2, 326, 327, 358, | ||
0, 13, 14, 17, 37, 39, 40, 61, 78, 80, 81, 82, 84, | ||
87, 88, 91, 95, 146, 178, 181, 185, 191, 267, 269, 270, 291, | ||
308, 310, 311, 312, 314, 317, 318, 321, 324, 375, 402, 405, 409, | ||
415] | ||
|
||
EMBEDDING_INDICES_NP = np.array(EMBEDDING_INDICES, dtype=np.int64) | ||
|
||
MEDIAPIPE_LANDMARK_NUMBER = 478 | ||
NON_EMBEDDING_INDICES = [i for i in range(MEDIAPIPE_LANDMARK_NUMBER ) if i not in EMBEDDING_INDICES] | ||
NON_EMBEDDING_INDICES_NP = np.array(NON_EMBEDDING_INDICES, dtype=np.int64) | ||
|
||
sorter = np.argsort(EMBEDDING_INDICES) | ||
UPPER_EYELIDS_EM = sorter[np.searchsorted(EMBEDDING_INDICES, UPPER_EYELIDS, sorter=sorter)] | ||
LOWER_EYELIDS_EM = sorter[np.searchsorted(EMBEDDING_INDICES, LOWER_EYELIDS, sorter=sorter)] | ||
|
||
|
||
|
||
UPPER_OUTTER_LIP_LINE_EM = sorter[np.searchsorted(EMBEDDING_INDICES, UPPER_OUTTER_LIP_LINE, sorter=sorter)] | ||
LOWER_OUTTER_LIP_LINE_EM = sorter[np.searchsorted(EMBEDDING_INDICES, LOWER_OUTTER_LIP_LINE, sorter=sorter)] | ||
LOWER_INNER_LIP_LINE_EM = sorter[np.searchsorted(EMBEDDING_INDICES, LOWER_INNER_LIP_LINE, sorter=sorter)] | ||
UPPER_INNER_LIP_LINE_EM = sorter[np.searchsorted(EMBEDDING_INDICES, UPPER_INNER_LIP_LINE, sorter=sorter)] | ||
|
||
RIGHT_INNER_LIP_CORNER_EM = sorter[np.searchsorted(EMBEDDING_INDICES, np.array([RIGHT_INNER_LIP_CORNER]), sorter=sorter)] | ||
LEFT_INNER_LIP_CORNER_EM = sorter[np.searchsorted(EMBEDDING_INDICES, np.array([LEFT_INNER_LIP_CORNER]), sorter=sorter)] | ||
RIGHT_OUTTER_LIP_CORNER_EM = sorter[np.searchsorted(EMBEDDING_INDICES, np.array([RIGHT_OUTTER_LIP_CORNER]), sorter=sorter)] | ||
LEFT_OUTTER_LIP_CORNER_EM = sorter[np.searchsorted(EMBEDDING_INDICES, np.array([LEFT_OUTTER_LIP_CORNER]), sorter=sorter)] | ||
|
||
|
||
def get_mediapipe_indices(): | ||
# This index array contains indices of mediapipe landmarks that are selected by Timo. | ||
# These include the eyes, eyebrows, nose, and mouth. Not the face contour and others. | ||
# Loaded from mediapipe_landmark_embedding.npz by Timo. | ||
indices = np.array([276, 282, 283, 285, 293, 295, 296, 300, 334, 336, 46, 52, 53, | ||
55, 63, 65, 66, 70, 105, 107, 249, 263, 362, 373, 374, 380, | ||
381, 382, 384, 385, 386, 387, 388, 390, 398, 466, 7, 33, 133, | ||
144, 145, 153, 154, 155, 157, 158, 159, 160, 161, 163, 173, 246, | ||
168, 6, 197, 195, 5, 4, 129, 98, 97, 2, 326, 327, 358, | ||
0, 13, 14, 17, 37, 39, 40, 61, 78, 80, 81, 82, 84, | ||
87, 88, 91, 95, 146, 178, 181, 185, 191, 267, 269, 270, 291, | ||
308, 310, 311, 312, 314, 317, 318, 321, 324, 375, 402, 405, 409, | ||
415]) | ||
return indices | ||
|
||
|
||
def batch_kp_2d_l1_loss(real_2d_kp, predicted_2d_kp, weights=None): | ||
""" | ||
Computes the l1 loss between the ground truth keypoints and the predicted keypoints | ||
Inputs: | ||
kp_gt : N x K x 3 | ||
kp_pred: N x K x 2 | ||
""" | ||
if weights is not None: | ||
real_2d_kp[..., 2] = weights[None, :] * real_2d_kp[..., 2] | ||
kp_gt = real_2d_kp.view(-1, 3) | ||
kp_pred = predicted_2d_kp.contiguous().view(-1, 2) | ||
vis = kp_gt[..., 2] | ||
k = torch.sum(vis) * 2.0 + 1e-8 | ||
dif_abs = torch.abs(kp_gt[..., :2] - kp_pred).sum(1) | ||
return torch.matmul(dif_abs, vis) * 1.0 / k | ||
|
||
|
||
def landmark_loss(predicted_landmarks, landmarks_gt, weights=None): | ||
# if torch.is_tensor(landmarks_gt) is not True: | ||
# real_2d = torch.cat(landmarks_gt) | ||
# else: | ||
# real_2d = torch.cat([landmarks_gt, torch.ones((landmarks_gt.shape[0], 68, 1)) | ||
# ], dim=-1) | ||
|
||
# loss_lmk_2d = batch_kp_2d_l1_loss( | ||
# landmarks_gt[..., EMBEDDING_INDICES, :], | ||
# # real_2d[..., get_mediapipe_indices(), :], | ||
# predicted_landmarks[..., :, :]) | ||
assert predicted_landmarks[..., :2].isnan().sum() == 0 | ||
assert landmarks_gt[..., :2].isnan().sum() == 0 | ||
loss_lmk_2d = (predicted_landmarks[..., :2] - landmarks_gt[..., EMBEDDING_INDICES, :2]).abs() | ||
if loss_lmk_2d.ndim == 3: | ||
loss_lmk_2d= loss_lmk_2d.mean(dim=2) | ||
elif loss_lmk_2d.ndim == 4: | ||
loss_lmk_2d = loss_lmk_2d.mean(dim=(2,3)) | ||
else: | ||
raise ValueError(f"Wrong dimension of loss_lmk_2d: { loss_lmk_2d.ndim}") | ||
if weights is None: | ||
return loss_lmk_2d.mean() | ||
if weights.sum().abs() < 1e-8: | ||
return torch.tensor(0) | ||
if weights is not None: | ||
w = weights / torch.sum(weights) | ||
loss_lmk_2d = w * loss_lmk_2d | ||
return loss_lmk_2d.sum() | ||
return loss_lmk_2d | ||
|
||
|
||
|
||
def lip_dis(lip_up, lip_down): | ||
# lip_up = landmarks[:, UPPER_OUTTER_LIP_LINE + UPPER_INNER_LIP_LINE, :] | ||
# lip_down = landmarks[:, LOWER_OUTTER_LIP_LINE + LOWER_INNER_LIP_LINE, :] | ||
dis = torch.sqrt(((lip_up - lip_down) ** 2).sum(2)) # [bz, 4] | ||
return dis | ||
|
||
|
||
def mouth_corner_dis(lip_right, lip_left): | ||
# lip_right = landmarks[:, [LEFT_INNER_LIP_CORNER, LEFT_OUTTER_LIP_CORNER], :] | ||
# lip_left = landmarks[:, [RIGHT_INNER_LIP_CORNER, RIGHT_OUTTER_LIP_CORNER], :] | ||
dis = torch.sqrt(((lip_right - lip_left) ** 2).sum(2)) # [bz, 4] | ||
return dis | ||
|
||
|
||
def lipd_loss(predicted_landmarks, landmarks_gt, weights=None): | ||
# if torch.is_tensor(landmarks_gt) is not True: | ||
# real_2d = torch.cat(landmarks_gt) | ||
# else: | ||
# real_2d = torch.cat([landmarks_gt, torch.ones((landmarks_gt.shape[0], 68, 1)).to(device=predicted_landmarks.device) #.cuda() | ||
# ], dim=-1) | ||
pred_lipd = lip_dis(predicted_landmarks[..., np.concatenate([UPPER_OUTTER_LIP_LINE_EM, UPPER_INNER_LIP_LINE_EM]), :2] , | ||
predicted_landmarks[..., np.concatenate([LOWER_OUTTER_LIP_LINE_EM, LOWER_INNER_LIP_LINE_EM]), :2]) | ||
gt_lipd = lip_dis(landmarks_gt[..., UPPER_OUTTER_LIP_LINE + UPPER_INNER_LIP_LINE, :2] , | ||
landmarks_gt[..., LOWER_OUTTER_LIP_LINE + LOWER_INNER_LIP_LINE, :2]) | ||
|
||
# gt_lipd = lip_dis(real_2d[... :2]) | ||
|
||
loss = (pred_lipd - gt_lipd).abs() | ||
if weights is None: | ||
return loss.mean() | ||
if weights.sum().abs() < 1e-8: | ||
return torch.tensor(0) | ||
if loss.ndim == 3: | ||
loss = loss.mean(dim=2) | ||
elif loss.ndim == 4: | ||
loss = loss.mean(dim=(2,3)) | ||
w = weights / torch.sum(weights) | ||
loss = w * loss | ||
return loss.sum() | ||
|
||
|
||
def mouth_corner_loss(predicted_landmarks, landmarks_gt, weights=None): | ||
# if torch.is_tensor(landmarks_gt) is not True: | ||
# real_2d = torch.cat(landmarks_gt) | ||
# else: | ||
# real_2d = torch.cat([landmarks_gt, torch.ones((landmarks_gt.shape[0], 68, 1)).to(device=predicted_landmarks.device) #.cuda() | ||
# ], dim=-1) | ||
|
||
pred_corner_d = mouth_corner_dis( | ||
predicted_landmarks[..., np.concatenate([RIGHT_INNER_LIP_CORNER_EM, RIGHT_OUTTER_LIP_CORNER_EM]) , :2], | ||
predicted_landmarks[..., np.concatenate([LEFT_INNER_LIP_CORNER_EM, LEFT_OUTTER_LIP_CORNER_EM]) , :2] | ||
) | ||
gt_corner_d = mouth_corner_dis( | ||
landmarks_gt[..., [RIGHT_INNER_LIP_CORNER, RIGHT_OUTTER_LIP_CORNER] , :2], | ||
landmarks_gt[..., [LEFT_INNER_LIP_CORNER, LEFT_OUTTER_LIP_CORNER] , :2]) | ||
# gt_corner_d = mouth_corner_dis(real_2d[:, :, :2]) | ||
|
||
loss = (pred_corner_d - gt_corner_d).abs() | ||
if weights is None: | ||
return loss.mean() | ||
if weights.sum().abs() < 1e-8: | ||
return torch.tensor(0) | ||
if loss.ndim == 3: | ||
loss = loss.mean(dim=2) | ||
elif loss.ndim == 4: | ||
loss = loss.mean(dim=(2,3)) | ||
w = weights / torch.sum(weights) | ||
loss = w * loss | ||
return loss.sum() | ||
|
||
|
||
def eye_dis(eye_upper, eye_lower): | ||
# eye_upper = landmarks[:, UPPER_EYELIDS_TORCH, :][..., :2] | ||
# eye_lower = landmarks[:, LOWER_EYELIDS_TORCH, :][..., :2] | ||
dis = torch.sqrt(((eye_upper - eye_lower) ** 2).sum(2)) # [bz, 4] | ||
return dis | ||
|
||
|
||
def eyed_loss(predicted_landmarks, landmarks_gt, weights=None): | ||
# if torch.is_tensor(landmarks_gt) is not True: | ||
# real_2d = torch.cat(landmarks_gt) | ||
# else: | ||
# real_2d = torch.cat([landmarks_gt, torch.ones((landmarks_gt.shape[0], 68, 1)).to(device=landmarks_gt.device) #.cuda() | ||
# ], dim=-1) | ||
pred_eyed = eye_dis(predicted_landmarks[..., UPPER_EYELIDS_EM , :2], | ||
predicted_landmarks[..., LOWER_EYELIDS_EM , :2]) | ||
gt_eyed = eye_dis(landmarks_gt[..., UPPER_EYELIDS, :2], | ||
landmarks_gt[..., LOWER_EYELIDS, :2]) | ||
# gt_eyed = eye_dis(real_2d[:, :, :2]) | ||
|
||
loss = (pred_eyed - gt_eyed).abs().mean() | ||
if weights is None: | ||
return loss.mean() | ||
if weights.sum().abs() < 1e-8: | ||
return torch.tensor(0) | ||
if loss.ndim == 3: | ||
loss = loss.mean(dim=2) | ||
elif loss.ndim == 4: | ||
loss = loss.mean(dim=(2,3)) | ||
w = weights / torch.sum(weights) | ||
loss = w * loss | ||
return loss.sum() |