Skip to content

Commit

Permalink
Adds preset contentRegistry for IngestProcessors (opensearch-project#…
Browse files Browse the repository at this point in the history
…3281)

* add preset xContentRegistry to ingestProcessors for custom parametized local models

Curently local models that use the parameters map within the payload to create a request can not create objects to be used for local model prediction. This requires a opensearch core change because it needs the contentRegistry,however given there is not much dependency on the registry (currently) we can give it the preset registry given in the MachineLearningPlugin class vai the getNamedXContent() class

Signed-off-by: Brian Flores <iflorbri@amazon.com>

* Adds UT for proving models depend on xContentRegistry for prediction

Signed-off-by: Brian Flores <iflorbri@amazon.com>

* apply spotless

Signed-off-by: Brian Flores <iflorbri@amazon.com>

* Adds IT for Asymmetric Embedding scenario with MLInferenceIngestProcessor

We needed to make sure that a IT existed so that the preset content registry on the processor could work with parametized local models. By providing an IT that uses the asymetric embedding model its proven that the content registry is needed to create the embeddings. In this specific test case I used a ingest pipeline to convert passage embeddings, by simulating the pipeline to save test time.

Signed-off-by: Brian Flores <iflorbri@amazon.com>

---------

Signed-off-by: Brian Flores <iflorbri@amazon.com>
(cherry picked from commit df1b1ef)
  • Loading branch information
brianf-aws committed Dec 31, 2024
1 parent 92824bb commit 26d5cf6
Show file tree
Hide file tree
Showing 4 changed files with 182 additions and 2 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -1063,10 +1063,12 @@ public void loadExtensions(ExtensionLoader loader) {
@Override
public Map<String, org.opensearch.ingest.Processor.Factory> getProcessors(org.opensearch.ingest.Processor.Parameters parameters) {
Map<String, org.opensearch.ingest.Processor.Factory> processors = new HashMap<>();
NamedXContentRegistry contentRegistry = new NamedXContentRegistry(getNamedXContent());

processors
.put(
MLInferenceIngestProcessor.TYPE,
new MLInferenceIngestProcessor.Factory(parameters.scriptService, parameters.client, xContentRegistry)
new MLInferenceIngestProcessor.Factory(parameters.scriptService, parameters.client, contentRegistry)
);
return Collections.unmodifiableMap(processors);
}
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -31,6 +31,7 @@
import org.opensearch.core.action.ActionListener;
import org.opensearch.core.xcontent.NamedXContentRegistry;
import org.opensearch.ingest.IngestDocument;
import org.opensearch.ml.common.FunctionName;
import org.opensearch.ml.common.dataset.remote.RemoteInferenceInputDataSet;
import org.opensearch.ml.common.input.MLInput;
import org.opensearch.ml.common.output.model.MLResultDataType;
Expand Down Expand Up @@ -138,6 +139,60 @@ public void testExecute_Exception() throws Exception {

}

/**
* Models that use the parameters field need to have a valid NamedXContentRegistry object to create valid MLInputs. For example
* <pre>
* PUT /_plugins/_ml/_predict/text_embedding/model_id
* {
* "parameters": {
* "content_type" : "query"
* },
* "text_docs" : ["what day is it today?"],
* "target_response" : ["sentence_embedding"]
* }
* </pre>
* These types of models like Local Asymmetric embedding models use the parameters field.
* And as such we need to test that having the contentRegistry throws an exception as it can not
* properly create a valid MLInput to perform prediction
*
* @implNote If you check the stack trace of the test you will see it tells you that it's a direct consequence of xContentRegistry being null
*/
public void testExecute_xContentRegistryNullWithLocalModel_throwsException() throws Exception {
// Set the registry to null and reset after exiting the test
xContentRegistry = null;

String localModelInput =
"{ \"text_docs\": [\"What day is it today?\"],\"target_response\": [\"sentence_embedding\"], \"parameters\": { \"contentType\" : \"query\"} }";

MLInferenceIngestProcessor processor = createMLInferenceProcessor(
"local_model_id",
null,
null,
null,
false,
FunctionName.TEXT_EMBEDDING.toString(),
false,
false,
false,
localModelInput
);
try {
String npeMessage =
"Cannot invoke \"org.opensearch.ml.common.input.MLInput.setAlgorithm(org.opensearch.ml.common.FunctionName)\" because \"mlInput\" is null";

processor.execute(ingestDocument, handler);
verify(handler)
.accept(
isNull(),
argThat(exception -> exception instanceof NullPointerException && exception.getMessage().equals(npeMessage))
);
} catch (Exception e) {
assertEquals("this catch block should not get executed.", e.getMessage());
}
// reset to mocked object
xContentRegistry = mock(NamedXContentRegistry.class);
}

/**
* test nested object document with array of Map<String,String>
*/
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,7 @@
package org.opensearch.ml.rest;

import static org.opensearch.ml.common.MLTask.MODEL_ID_FIELD;
import static org.opensearch.ml.utils.TestData.SENTENCE_TRANSFORMER_MODEL_HASH_VALUE;
import static org.opensearch.ml.utils.TestData.SENTENCE_TRANSFORMER_MODEL_URL;
import static org.opensearch.ml.utils.TestHelper.makeRequest;

Expand All @@ -25,6 +26,8 @@
import org.opensearch.ml.common.transport.register.MLRegisterModelInput;
import org.opensearch.ml.utils.TestHelper;

import com.google.common.collect.ImmutableList;
import com.jayway.jsonpath.DocumentContext;
import com.jayway.jsonpath.JsonPath;

public class RestMLInferenceIngestProcessorIT extends MLCommonsRestTestCase {
Expand Down Expand Up @@ -431,6 +434,110 @@ public void testMLInferenceProcessorLocalModelObjectField() throws Exception {
Assert.assertEquals(0.49191704, (Double) embedding2.get(0), 0.005);
}

public void testMLInferenceIngestProcessor_simulatesIngestPipelineSuccessfully_withAsymmetricEmbeddingModelUsingPassageContentType()
throws Exception {
String taskId = registerModel(TestHelper.toJsonString(registerAsymmetricEmbeddingModelInput()));
waitForTask(taskId, MLTaskState.COMPLETED);
getTask(client(), taskId, response -> {
assertNotNull(response.get(MODEL_ID_FIELD));
this.localModelId = (String) response.get(MODEL_ID_FIELD);
try {
String deployTaskID = deployModel(this.localModelId);
waitForTask(deployTaskID, MLTaskState.COMPLETED);

getModel(client(), this.localModelId, model -> { assertEquals("DEPLOYED", model.get("model_state")); });
} catch (IOException | InterruptedException e) {
throw new RuntimeException(e);
}
});

String asymmetricPipelineName = "asymmetric_embedding_pipeline";
String createPipelineRequestBody = "{\n"
+ " \"description\": \"ingest PASSAGE text and generate a embedding using an asymmetric model\",\n"
+ " \"processors\": [\n"
+ " {\n"
+ " \"ml_inference\": {\n"
+ "\n"
+ " \"model_input\": \"{\\\"text_docs\\\":[\\\"${input_map.text_docs}\\\"],\\\"target_response\\\":[\\\"sentence_embedding\\\"],\\\"parameters\\\":{\\\"content_type\\\":\\\"passage\\\"}}\",\n"
+ " \"function_name\": \"text_embedding\",\n"
+ " \"model_id\": \""
+ this.localModelId
+ "\",\n"
+ " \"input_map\": [\n"
+ " {\n"
+ " \"text_docs\": \"description\"\n"
+ " }\n"
+ " ],\n"
+ " \"output_map\": [\n"
+ " {\n"
+ "\n"
+ " "
+ " \"fact_embedding\": \"$.inference_results[0].output[0].data\"\n"
+ " }\n"
+ " ]\n"
+ " }\n"
+ " }\n"
+ " ]\n"
+ "}";

createPipelineProcessor(createPipelineRequestBody, asymmetricPipelineName);
String sampleDocuments = "{\n"
+ " \"docs\": [\n"
+ " {\n"
+ " \"_index\": \"my-index\",\n"
+ " \"_id\": \"1\",\n"
+ " \"_source\": {\n"
+ " \"title\": \"Central Park\",\n"
+ " \"description\": \"A large public park in the heart of New York City, offering a wide range of recreational activities.\"\n"
+ " }\n"
+ " },\n"
+ " {\n"
+ " \"_index\": \"my-index\",\n"
+ " \"_id\": \"2\",\n"
+ " \"_source\": {\n"
+ " \"title\": \"Empire State Building\",\n"
+ " \"description\": \"An iconic skyscraper in New York City offering breathtaking views from its observation deck.\"\n"
+ " }\n"
+ " }\n"
+ " ]\n"
+ "}\n";

Map simulateResponseDocuments = simulateIngestPipeline(asymmetricPipelineName, sampleDocuments);

DocumentContext documents = JsonPath.parse(simulateResponseDocuments);

List centralParkFactEmbedding = documents.read("docs.[0].*._source.fact_embedding.*");
assertEquals(768, centralParkFactEmbedding.size());
Assert.assertEquals(0.5137818, (Double) centralParkFactEmbedding.get(0), 0.005);

List empireStateBuildingFactEmbedding = documents.read("docs.[1].*._source.fact_embedding.*");
assertEquals(768, empireStateBuildingFactEmbedding.size());
Assert.assertEquals(0.4493039, (Double) empireStateBuildingFactEmbedding.get(0), 0.005);
}

private MLRegisterModelInput registerAsymmetricEmbeddingModelInput() {
MLModelConfig modelConfig = TextEmbeddingModelConfig
.builder()
.modelType("bert")
.frameworkType(TextEmbeddingModelConfig.FrameworkType.SENTENCE_TRANSFORMERS)
.embeddingDimension(768)
.queryPrefix("query >>")
.passagePrefix("passage >> ")
.build();

return MLRegisterModelInput
.builder()
.modelName("test_model_name")
.version("1.0.0")
.functionName(FunctionName.TEXT_EMBEDDING)
.modelFormat(MLModelFormat.TORCH_SCRIPT)
.modelConfig(modelConfig)
.url(SENTENCE_TRANSFORMER_MODEL_URL)
.deployModel(false)
.hashValue(SENTENCE_TRANSFORMER_MODEL_HASH_VALUE)
.build();
}

// TODO: add tests for other local model types such as sparse/cross encoders
public void testMLInferenceProcessorLocalModelNestedField() throws Exception {

Expand Down Expand Up @@ -550,6 +657,21 @@ protected void createPipelineProcessor(String requestBody, final String pipeline

}

protected Map simulateIngestPipeline(String pipelineName, String sampleDocuments) throws IOException {
Response ingestionResponse = TestHelper
.makeRequest(
client(),
"POST",
"/_ingest/pipeline/" + pipelineName + "/_simulate",
null,
sampleDocuments,
null
);
assertEquals(200, ingestionResponse.getStatusLine().getStatusCode());

return parseResponseToMap(ingestionResponse);
}

protected void createIndex(String indexName, String requestBody) throws Exception {
Response response = makeRequest(client(), "PUT", indexName, null, requestBody, null);
assertEquals(200, response.getStatusLine().getStatusCode());
Expand Down Expand Up @@ -585,7 +707,7 @@ protected MLRegisterModelInput registerModelInput() throws IOException, Interrup
.modelConfig(modelConfig)
.url(SENTENCE_TRANSFORMER_MODEL_URL)
.deployModel(false)
.hashValue("e13b74006290a9d0f58c1376f9629d4ebc05a0f9385f40db837452b167ae9021")
.hashValue(SENTENCE_TRANSFORMER_MODEL_HASH_VALUE)
.build();
}

Expand Down
1 change: 1 addition & 0 deletions plugin/src/test/java/org/opensearch/ml/utils/TestData.java
Original file line number Diff line number Diff line change
Expand Up @@ -30,6 +30,7 @@ public class TestData {
"https://github.com/opensearch-project/ml-commons/blob/2.x/ml-algorithms/src/test/resources/org/opensearch/ml/engine/algorithms/text_embedding/all-MiniLM-L6-v2_torchscript_huggingface.zip?raw=true";
public static final String SENTENCE_TRANSFORMER_MODEL_URL =
"https://github.com/opensearch-project/ml-commons/blob/2.x/ml-algorithms/src/test/resources/org/opensearch/ml/engine/algorithms/text_embedding/traced_small_model.zip?raw=true";
public static final String SENTENCE_TRANSFORMER_MODEL_HASH_VALUE = "e13b74006290a9d0f58c1376f9629d4ebc05a0f9385f40db837452b167ae9021";
public static final String TIME_FIELD = "timestamp";
public static final String HUGGINGFACE_TRANSFORMER_MODEL_HASH_VALUE =
"e13b74006290a9d0f58c1376f9629d4ebc05a0f9385f40db837452b167ae9021";
Expand Down

0 comments on commit 26d5cf6

Please sign in to comment.