IoU-Enhanced Attention for End-to-End Task Specific Object Detection
Method | box AP | download |
---|---|---|
R50_100pro_3x | 44.4 | model |
R50_300pro_3x | 46.4 | model |
R101_100pro_3x | 45.6 | model |
R101_300pro_3x | 47.5 | model |
Models are available in Baidu Drive by code jysg.
The codebases are built on top of Detectron2 and SparseR-CNN.
- Linux or macOS with Python ≥ 3.6
- PyTorch ≥ 1.5 and torchvision that matches the PyTorch installation. You can install them together at pytorch.org to make sure of this
- OpenCV is optional and needed by demo and visualization
- Install and build libs
git clone https://github.com/bravezzzzzz/IoU-Enhanced-Attention.git
cd IoU-Enhanced-Attention
python setup.py build develop
- Link coco dataset path to IoU-Enhanced-Attention/datasets/coco
mkdir -p datasets/coco
ln -s /path_to_coco_dataset/annotations datasets/coco/annotations
ln -s /path_to_coco_dataset/train2017 datasets/coco/train2017
ln -s /path_to_coco_dataset/val2017 datasets/coco/val2017
- Train
python projects/SparseRCNN/train_net.py --num-gpus 8 \
--config-file projects/SparseRCNN/configs/sparsercnn.res50.100pro.3x.yaml
- Evaluate
python projects/SparseRCNN/train_net.py --num-gpus 8 \
--config-file projects/SparseRCNN/configs/sparsercnn.res50.100pro.3x.yaml \
--eval-only MODEL.WEIGHTS path/to/model.pth
- Visualize
python demo/demo.py\
--config-file projects/SparseRCNN/configs/sparsercnn.res50.100pro.3x.yaml \
--input path/to/images --output path/to/save_images --confidence-threshold 0.4 \
--opts MODEL.WEIGHTS path/to/model.pth
If you use this code for your research, please cite
@article{zhao2022iou,
title={IoU-Enhanced Attention for End-to-End Task Specific Object Detection},
author={Zhao, Jing and Wu, Shengjian and Sun, Li and Li, Qingli},
journal={arXiv preprint arXiv:2209.10391},
year={2022}
}