Skip to content

Official implementation for "IoU-Enhanced Attention for End-to-End Task Specific Object Detection"

License

Notifications You must be signed in to change notification settings

bravezzzzzz/IoU-Enhanced-Attention

Repository files navigation

IoU-Enhanced-Attention

IoU-Enhanced Attention for End-to-End Task Specific Object Detection

License: MIT

Paper

IoU-Enhanced Attention for End-to-End Task Specific Object Detection

Models

Method box AP download
R50_100pro_3x 44.4 model
R50_300pro_3x 46.4 model
R101_100pro_3x 45.6 model
R101_300pro_3x 47.5 model

Models are available in Baidu Drive by code jysg.

Installation

The codebases are built on top of Detectron2 and SparseR-CNN.

Requirements

  • Linux or macOS with Python ≥ 3.6
  • PyTorch ≥ 1.5 and torchvision that matches the PyTorch installation. You can install them together at pytorch.org to make sure of this
  • OpenCV is optional and needed by demo and visualization

Steps

  1. Install and build libs
git clone https://github.com/bravezzzzzz/IoU-Enhanced-Attention.git
cd IoU-Enhanced-Attention
python setup.py build develop
  1. Link coco dataset path to IoU-Enhanced-Attention/datasets/coco
mkdir -p datasets/coco
ln -s /path_to_coco_dataset/annotations datasets/coco/annotations
ln -s /path_to_coco_dataset/train2017 datasets/coco/train2017
ln -s /path_to_coco_dataset/val2017 datasets/coco/val2017
  1. Train
python projects/SparseRCNN/train_net.py --num-gpus 8 \
    --config-file projects/SparseRCNN/configs/sparsercnn.res50.100pro.3x.yaml
  1. Evaluate
python projects/SparseRCNN/train_net.py --num-gpus 8 \
    --config-file projects/SparseRCNN/configs/sparsercnn.res50.100pro.3x.yaml \
    --eval-only MODEL.WEIGHTS path/to/model.pth
  1. Visualize
python demo/demo.py\
    --config-file projects/SparseRCNN/configs/sparsercnn.res50.100pro.3x.yaml \
    --input path/to/images --output path/to/save_images --confidence-threshold 0.4 \
    --opts MODEL.WEIGHTS path/to/model.pth

Citing

If you use this code for your research, please cite

@article{zhao2022iou,
  title={IoU-Enhanced Attention for End-to-End Task Specific Object Detection},
  author={Zhao, Jing and Wu, Shengjian and Sun, Li and Li, Qingli},
  journal={arXiv preprint arXiv:2209.10391},
  year={2022}
}

About

Official implementation for "IoU-Enhanced Attention for End-to-End Task Specific Object Detection"

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published