Open
Description
When running the example:
## a simple linear example
set.seed(1907)
data <- data.frame(x1 = rnorm(100), x2 = rnorm(100),
z = factor(sample(1:3, 100, replace = TRUE)))
data$y <- rnorm(100, mean = data$x1 - data$x2 - 1 * (data$z == 2) +
1 * (data$z == 3), sd = 0.1)
linmod <- glmboost(y ~ x1 + x2 + z, data = data,
control = boost_control(mstop = 200))
## compute confidence interval from 10 samples. Usually one should use
## at least 1000 samples.
CI <- confint(linmod, B = 10, level = 0.9)
CI
The same no. of warnings is generated as bootstrap samples are specified. The warning says:
In cvrisk.mboost(mod, folds = cv(model.weights(mod), B = B.mstop), : zero weights
However, model.weights() of "linmod" is a vector of 1.