Skip to content

Mathematical framework connecting surjective group homomorphisms to quantum error correction via Type II₁ von Neumann algebras. Derives code distance bounds from algebraic structure and validates with computational examples.

License

Notifications You must be signed in to change notification settings

boonespacedog/surjection-to-qec

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Bounded Surjections to Quantum Error-Correcting Codes: An Operator-Algebraic Construction

DOI License: MIT

Computational verification code for: "From Bounded Surjections to Quantum Error-Correcting Codes"

Author: Oksana Sudoma


Overview

This repository provides complete computational validation for quantum error-correcting codes constructed from bounded surjections. We demonstrate the surjection framework produces valid quantum codes with verified parameters and explore continuous code family evolution.

Key discoveries:

  • [[4,2,2]] quantum code validated (kernel geometry)
  • Rank transitions in continuous code families
  • Machine-precision kernel orthogonality (< 10^-16)
  • Functorial morphisms preserve quantum code structure

Experiments

E49: Kernel Geometry Visualization

Validates [[4,2,2]] quantum code construction from bounded surjections.

Key results:

  • Code distance d=2 verified
  • Kernel orthogonality: 10^-16 (machine precision)
  • Logical operators detected
  • Runtime: < 1 second

Documentation: See experiments/E49_kernel_geometry_viz/ABOUT_THIS_EXPERIMENT.md for complete research narrative (hypothesis → results → interpretation).

Quick start:

cd experiments/E49_kernel_geometry_viz
python3 -m venv venv
source venv/bin/activate
pip install -r requirements.txt
python3 main.py

E50: Functorial Code Morphisms

Continuous code family evolution with rank transition detection.

Key results:

  • Rank transitions detected at t = 2^n - 1 (discrete phase transitions!)
  • Dimension jumps: |Δdim/Δt| = 198 at critical points
  • Topological protection discovered (codes resist smooth deformation)
  • Runtime: ~1.5 seconds

Documentation: See experiments/E50_functorial_code_morphisms/ABOUT_THIS_EXPERIMENT.md for complete research narrative and link to topological interpretations.

Quick start:

cd experiments/E50_functorial_code_morphisms
python3 -m venv venv
source venv/bin/activate
pip install -r requirements.txt
python3 main.py

Repository Structure

surjection-to-qec/
├── experiments/
│   ├── E49_kernel_geometry_viz/            # [[4,2,2]] code validation
│   │   ├── src/                            # Core implementation
│   │   ├── tests/                          # Unit tests
│   │   ├── outputs/
│   │   │   ├── EXPERIMENTAL_REPORT_E49.md  # Execution results
│   │   │   ├── ANALYTICAL_REPORT_E49.md    # Analysis and interpretation
│   │   │   ├── results/                    # Validated numerical data
│   │   │   └── figures/                    # Visualizations
│   │   ├── ABOUT_THIS_EXPERIMENT.md        # Research narrative
│   │   ├── README.md                       # Experiment pre-registration
│   │   ├── main.py                         # Entry point
│   │   └── requirements.txt
│   └── E50_functorial_code_morphisms/      # Code family evolution
│       ├── src/                            # Core implementation
│       ├── tests/                          # Unit tests
│       ├── outputs/
│       │   ├── ANALYTICAL_REPORT_E50.md    # Results and analysis
│       │   └── session_*/                  # Numerical data and figures
│       ├── ABOUT_THIS_EXPERIMENT.md        # Research narrative
│       ├── PHASE_TRANSITION_INTERPRETATIONS.md  # Theoretical implications
│       ├── README.md                       # Experiment pre-registration
│       ├── main.py                         # Entry point
│       └── requirements.txt
├── paper/
│   ├── Sudoma_O_Nov2025_surjection_to_qec.pdf  # Latest version (v7)
│   └── surjection_to_qec_v7.tex
├── LICENSE
├── README.md                               # This file
└── .gitignore

Mathematical Background

Quantum error-correcting codes protect quantum information from decoherence. The [[n,k,d]] notation represents:

  • n: Number of physical qubits
  • k: Number of logical qubits
  • d: Code distance (error-correcting capability)

This work constructs quantum codes from bounded surjections φ: H₁ → H₂ satisfying ‖φ‖ ≤ C. The kernel geometry determines code parameters, and continuous parameter variation reveals rank transitions.

Novel phenomena:

  • Surjection framework provides geometric construction
  • Kernel orthogonality verified to machine precision
  • Continuous families exhibit sharp rank transitions
  • Functorial properties preserved under morphisms

Reproducibility

All results are computationally verified:

  1. Run individual experiments: See Quick Start sections above
  2. Run tests: python3 -m pytest tests/ -v (in each experiment directory)
  3. Expected runtime: < 3 seconds total (both experiments)

All numerical results match paper claims to stated precision.


Citation

@misc{sudoma2025surjection,
  author = {Sudoma, Oksana},
  title = {From Bounded Surjections to Quantum Error-Correcting Codes: An Operator-Algebraic Construction},
  year = {2025},
  doi = {10.5281/zenodo.17585624},
  url = {https://github.com/boonespacedog/surjection-to-qec}
}

License

MIT License - see LICENSE file for details.


Author

Oksana Sudoma - Independent Researcher

Computational validation and mathematical formalism assisted by Claude (Anthropic). All scientific conclusions and theoretical insights are the author's sole responsibility.


Links

About

Mathematical framework connecting surjective group homomorphisms to quantum error correction via Type II₁ von Neumann algebras. Derives code distance bounds from algebraic structure and validates with computational examples.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •  

Languages