Computational verification code for: "From Bounded Surjections to Quantum Error-Correcting Codes"
Author: Oksana Sudoma
This repository provides complete computational validation for quantum error-correcting codes constructed from bounded surjections. We demonstrate the surjection framework produces valid quantum codes with verified parameters and explore continuous code family evolution.
Key discoveries:
- [[4,2,2]] quantum code validated (kernel geometry)
- Rank transitions in continuous code families
- Machine-precision kernel orthogonality (< 10^-16)
- Functorial morphisms preserve quantum code structure
Validates [[4,2,2]] quantum code construction from bounded surjections.
Key results:
- Code distance d=2 verified
- Kernel orthogonality: 10^-16 (machine precision)
- Logical operators detected
- Runtime: < 1 second
Documentation: See experiments/E49_kernel_geometry_viz/ABOUT_THIS_EXPERIMENT.md for complete research narrative (hypothesis → results → interpretation).
Quick start:
cd experiments/E49_kernel_geometry_viz
python3 -m venv venv
source venv/bin/activate
pip install -r requirements.txt
python3 main.pyContinuous code family evolution with rank transition detection.
Key results:
- Rank transitions detected at t = 2^n - 1 (discrete phase transitions!)
- Dimension jumps: |Δdim/Δt| = 198 at critical points
- Topological protection discovered (codes resist smooth deformation)
- Runtime: ~1.5 seconds
Documentation: See experiments/E50_functorial_code_morphisms/ABOUT_THIS_EXPERIMENT.md for complete research narrative and link to topological interpretations.
Quick start:
cd experiments/E50_functorial_code_morphisms
python3 -m venv venv
source venv/bin/activate
pip install -r requirements.txt
python3 main.pysurjection-to-qec/
├── experiments/
│ ├── E49_kernel_geometry_viz/ # [[4,2,2]] code validation
│ │ ├── src/ # Core implementation
│ │ ├── tests/ # Unit tests
│ │ ├── outputs/
│ │ │ ├── EXPERIMENTAL_REPORT_E49.md # Execution results
│ │ │ ├── ANALYTICAL_REPORT_E49.md # Analysis and interpretation
│ │ │ ├── results/ # Validated numerical data
│ │ │ └── figures/ # Visualizations
│ │ ├── ABOUT_THIS_EXPERIMENT.md # Research narrative
│ │ ├── README.md # Experiment pre-registration
│ │ ├── main.py # Entry point
│ │ └── requirements.txt
│ └── E50_functorial_code_morphisms/ # Code family evolution
│ ├── src/ # Core implementation
│ ├── tests/ # Unit tests
│ ├── outputs/
│ │ ├── ANALYTICAL_REPORT_E50.md # Results and analysis
│ │ └── session_*/ # Numerical data and figures
│ ├── ABOUT_THIS_EXPERIMENT.md # Research narrative
│ ├── PHASE_TRANSITION_INTERPRETATIONS.md # Theoretical implications
│ ├── README.md # Experiment pre-registration
│ ├── main.py # Entry point
│ └── requirements.txt
├── paper/
│ ├── Sudoma_O_Nov2025_surjection_to_qec.pdf # Latest version (v7)
│ └── surjection_to_qec_v7.tex
├── LICENSE
├── README.md # This file
└── .gitignore
Quantum error-correcting codes protect quantum information from decoherence. The [[n,k,d]] notation represents:
- n: Number of physical qubits
- k: Number of logical qubits
- d: Code distance (error-correcting capability)
This work constructs quantum codes from bounded surjections φ: H₁ → H₂ satisfying ‖φ‖ ≤ C. The kernel geometry determines code parameters, and continuous parameter variation reveals rank transitions.
Novel phenomena:
- Surjection framework provides geometric construction
- Kernel orthogonality verified to machine precision
- Continuous families exhibit sharp rank transitions
- Functorial properties preserved under morphisms
All results are computationally verified:
- Run individual experiments: See Quick Start sections above
- Run tests:
python3 -m pytest tests/ -v(in each experiment directory) - Expected runtime: < 3 seconds total (both experiments)
All numerical results match paper claims to stated precision.
@misc{sudoma2025surjection,
author = {Sudoma, Oksana},
title = {From Bounded Surjections to Quantum Error-Correcting Codes: An Operator-Algebraic Construction},
year = {2025},
doi = {10.5281/zenodo.17585624},
url = {https://github.com/boonespacedog/surjection-to-qec}
}MIT License - see LICENSE file for details.
Oksana Sudoma - Independent Researcher
Computational validation and mathematical formalism assisted by Claude (Anthropic). All scientific conclusions and theoretical insights are the author's sole responsibility.
- Repository: https://github.com/boonespacedog/surjection-to-qec
- Zenodo Archive: https://doi.org/10.5281/zenodo.17585624
- Paper: See
paper/directory for latest version (v7)