Skip to content

Commit

Permalink
Make loading weights 10-100x faster
Browse files Browse the repository at this point in the history
This is a breaking change that's going to give you three benefits:

1. Your inference commands should load 100x faster
2. You may be able to safely load models 2x larger
3. You can run many concurrent inference processes

This was accomplished by changing the file format so we can mmap()
weights directly into memory without having to read() or copy them
thereby ensuring the kernel can make its file cache pages directly
accessible to our inference processes; and secondly, that the file
cache pages are much less likely to get evicted (which would force
loads to hit disk) because they're no longer competing with memory
pages that were needlessly created by gigabytes of standard i/o.

The new file format supports single-file models like LLaMA 7b, and
it also supports multi-file models like LLaMA 13B. Our Python tool
now merges the foo.1, foo.2, etc. files back into a single file so
that the C++ code which maps it doesn't need to reshape data every
time. That's made llama.cpp so much simpler. Much of its load code
has now been deleted.

Furthermore, this change ensures that tensors are aligned properly
on a 32-byte boundary. That opens the door to seeing if we can get
additional performance gains on some microprocessors, by using ops
that require memory alignment.

Lastly note that both POSIX and the Windows platform are supported

Fixes ggerganov#91
  • Loading branch information
jart committed Mar 30, 2023
1 parent a017390 commit 78ca983
Show file tree
Hide file tree
Showing 7 changed files with 334 additions and 373 deletions.
1 change: 1 addition & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -22,6 +22,7 @@ models/*
/result
/perplexity
/embedding
/Pipfile

arm_neon.h
compile_commands.json
Expand Down
5 changes: 5 additions & 0 deletions convert-ggml-to-pth.py
Original file line number Diff line number Diff line change
Expand Up @@ -84,6 +84,11 @@ def read_variables(fin):
shape = shape[::-1]
name = fin.read(name_length).decode("utf-8")

# ensure tensor data is aligned
tensor_data_offset = fin.tell()
tensor_data_offset = (tensor_data_offset + 31) & -32
fin.seek(tensor_data_offset)

if ftype_cur == 2:
# 4-bit quantized weights
dtype = np.uint8
Expand Down
5 changes: 5 additions & 0 deletions convert-gptq-to-ggml.py
Original file line number Diff line number Diff line change
Expand Up @@ -72,6 +72,11 @@ def write_header(shape, dst_name, ftype_cur):
fout.write(struct.pack("i" * len(shape), *shape[::-1]))
fout.write(sname)

# ensure tensor data is aligned
tensor_data_offset = fout.tell()
tensor_data_offset = (tensor_data_offset + 31) & -32
fout.seek(tensor_data_offset)

def convert_non_q4(src_name, dst_name):
v = model[src_name]
shape = v.shape
Expand Down
201 changes: 149 additions & 52 deletions convert-pth-to-ggml.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,16 +24,64 @@

from sentencepiece import SentencePieceProcessor

def parse_args():
QK = 32

GGML_TYPE_Q4_0 = 0
GGML_TYPE_Q4_1 = 1
GGML_TYPE_I8 = 2
GGML_TYPE_I16 = 3
GGML_TYPE_I32 = 4
GGML_TYPE_F16 = 5
GGML_TYPE_F32 = 6

WTYPES = {
0: GGML_TYPE_F32,
1: GGML_TYPE_F16,
2: GGML_TYPE_Q4_0,
3: GGML_TYPE_Q4_1,
}

GGML_BLCK_SIZE = {
GGML_TYPE_Q4_0: QK,
GGML_TYPE_Q4_1: QK,
GGML_TYPE_I8: 1,
GGML_TYPE_I16: 1,
GGML_TYPE_I32: 1,
GGML_TYPE_F16: 1,
GGML_TYPE_F32: 1,
}

GGML_TYPE_SIZE = {
GGML_TYPE_Q4_0: 4 + QK/2,
GGML_TYPE_Q4_1: 4*2 + QK/2,
GGML_TYPE_I8: 1,
GGML_TYPE_I16: 2,
GGML_TYPE_I32: 4,
GGML_TYPE_F16: 2,
GGML_TYPE_F32: 4,
}

def ggml_nelements(shape):
r = 1
for i in shape:
r *= i
return r

def ggml_nbytes(shape, ftype):
x = ggml_nelements(shape)
t = WTYPES[ftype]
x *= GGML_TYPE_SIZE[t]
x //= GGML_BLCK_SIZE[t]
return x

def parse_args():
parser = argparse.ArgumentParser(description='Convert a LLaMA model checkpoint to a ggml compatible file')
parser.add_argument('dir_model', help='directory containing the model checkpoint')
parser.add_argument('ftype', help='file type (0: float32, 1: float16)', type=int, choices=[0, 1], default=1)
parser.add_argument('vocab_only', help='only write vocab to file', type=int, default=0, nargs='?')
return parser.parse_args()

def get_n_parts(dim):

mappings = {4096: 1, 5120: 2, 6656: 4, 8192: 8}
n_parts = mappings.get(dim)
if n_parts is None:
Expand All @@ -44,30 +92,24 @@ def get_n_parts(dim):
return n_parts

def load_hparams_and_tokenizer(dir_model):

# `dir_model` is something like `models/7B` or `models/7B/`.
# "tokenizer.model" is expected under model's parent dir.
# When `dir_model` is a symlink, f"{dir_model}/../tokenizer.model" would not be found.
# Let's use the model's parent dir directly.
model_parent_dir = os.path.dirname(os.path.normpath(dir_model))

fname_hparams = f"{dir_model}/params.json"
fname_tokenizer = f"{model_parent_dir}/tokenizer.model"

with open(fname_hparams, "r") as f:
hparams = json.load(f)
print(hparams)

tokenizer = SentencePieceProcessor(fname_tokenizer)
hparams.update({"vocab_size": tokenizer.vocab_size()})

return hparams, tokenizer

def write_header(fout, hparams, ftype):

keys = ["vocab_size", "dim", "multiple_of", "n_heads", "n_layers"]
values = [
0x67676d66, # magic: ggmf in hex
0x67676a74, # magic: ggjt in hex
1, # file version
*[hparams[key] for key in keys],
hparams["dim"] // hparams["n_heads"], # rot (obsolete)
Expand All @@ -76,7 +118,6 @@ def write_header(fout, hparams, ftype):
fout.write(struct.pack("i" * len(values), *values))

def write_tokens(fout, tokenizer):

for i in range(tokenizer.vocab_size()):
if tokenizer.is_unknown(i):
text = " \u2047 ".encode("utf-8")
Expand All @@ -95,85 +136,141 @@ def write_tokens(fout, tokenizer):
fout.write(text)
fout.write(struct.pack("f", tokenizer.get_score(i)))

def process_and_write_variables(fout, model, ftype):

def process_and_write_variables(fout, model, ftype, part_id, n_parts):
for name, datao in model.items():

if name.endswith("freqs"):
continue

shape = datao.shape

print(f"Processing variable: {name} with shape: {shape} and type: {datao.dtype}")

# remove dimensions with a single element
data = datao.numpy().squeeze()
n_dims = len(shape)
partshape = data.shape
n_dims = len(data.shape)
assert n_dims in (1, 2)

print(f"Processing variable: {name} with shape: {partshape} and type: {datao.dtype}")

# default type is fp16
# coerce single-dimensional tensors from float16 to float32
ftype_cur = 1
if ftype == 0 or n_dims == 1:
print(" Converting to float32")
data = data.astype(np.float32)
ftype_cur = 0

# header
blck_size = GGML_BLCK_SIZE[WTYPES[ftype_cur]]
type_size = GGML_TYPE_SIZE[WTYPES[ftype_cur]]

# determine dimension along which multipart tensor is sharded
#
# split_dim 0 regex:
# - output.*
# - layers.*.attention.wq.weight
# - layers.*.attention.wk.weight
# - layers.*.attention.wv.weight
# - layers.*.feed_forward.w1.weight
# - layers.*.feed_forward.w3.weight
#
# split_dim 1 regex:
# - tok_embeddings.*
# - layers.*.attention.wo.weight
# - layers.*.feed_forward.w2.weight
#
if n_dims > 1:
split_dim = 1
if "tok_embeddings" in name:
split_dim = 1
elif "layers" in name:
if "attention.wo.weight" in name:
split_dim = 1
elif "feed_forward.w2.weight" in name:
split_dim = 1
else:
split_dim = 0
elif "output" in name:
split_dim = 0

# output tensor header
fullshape = list(partshape)
if n_dims > 1:
fullshape[split_dim] *= n_parts
sname = name.encode('utf-8')
fout.write(struct.pack("iii", len(data.shape), len(sname), ftype_cur))
for dim in reversed(data.shape):
fout.write(struct.pack("iii", n_dims, len(sname), ftype_cur))
for dim in reversed(fullshape):
fout.write(struct.pack("i", dim))
fout.write(sname)

# data output to file
data.tofile(fout)
# ensure tensor data is aligned
tensor_data_offset = fout.tell()
while tensor_data_offset % QK != 0:
fout.write(struct.pack("B", 0))
tensor_data_offset += 1

# output unified mappable tensor data
if n_dims == 1 or n_parts == 1:
# copy tensor which we thankfully received in one piece
if part_id == 0:
data.tofile(fout)
elif split_dim == 0:
# reassemble multifile tensor containing some of the rows
rows_per_chunk = partshape[0]
current_row = part_id * rows_per_chunk
bytes_per_row = fullshape[1] // blck_size * type_size
offset = current_row * bytes_per_row
fout.seek(tensor_data_offset + offset)
data.tofile(fout)
elif split_dim == 1:
# reassemble multifile tensor containing some of the cols
cols_per_chunk = partshape[1]
current_col = part_id * cols_per_chunk
bytes_per_row = fullshape[1] // blck_size * type_size
offset_current_col = current_col // blck_size * type_size
for row in range(partshape[0]):
offset_row = row * bytes_per_row
offset = offset_row + offset_current_col
fout.seek(tensor_data_offset + offset)
data[row].tofile(fout)

# advance file position to next tensor
fout.seek(tensor_data_offset + ggml_nbytes(fullshape, ftype_cur))

def main():

args = parse_args()
dir_model = args.dir_model
ftype = args.ftype
ftype_str = ["f32", "f16"]

hparams, tokenizer = load_hparams_and_tokenizer(dir_model)

print(args)

# if only writing vocab to file
if args.vocab_only:

fname_model = f"{dir_model}/consolidated.00.pth"
fname_out = f"{dir_model}/ggml-vocab.bin"

print(f"Extracting only the vocab from '{fname_model}'\n")


model = torch.load(fname_model, map_location="cpu")
with open(fname_out, "wb") as fout:
write_header(fout, hparams, ftype)
write_tokens(fout, tokenizer)


del model
print(f"Done. Output file: {fname_out}\n")

return

n_parts = get_n_parts(hparams["dim"])

for p in range(n_parts):

print(f"Processing part {p+1} of {n_parts}\n")

fname_model = f"{dir_model}/consolidated.0{p}.pth"
fname_out = f"{dir_model}/ggml-model-{ftype_str[ftype]}.bin{'' if p == 0 else '.' + str(p)}"

model = torch.load(fname_model, map_location="cpu")

with open(fname_out, "wb") as fout:
write_header(fout, hparams, ftype)
write_tokens(fout, tokenizer)
process_and_write_variables(fout, model, ftype)

del model

print(f"Done. Output file: {fname_out}, (part {p})\n")
fname_out = f"{dir_model}/ggml-model-{ftype_str[ftype]}.bin"

# we output a single file for ggml
with open(fname_out, "wb") as fout:
write_header(fout, hparams, ftype)
write_tokens(fout, tokenizer)
offset_of_tensors = fout.tell()
# the tensors we load could be split across multiple files
for part_id in range(n_parts):
fout.seek(offset_of_tensors)
print(f"Processing part {part_id+1} of {n_parts}\n")
fname_model = f"{dir_model}/consolidated.0{part_id}.pth"
model = torch.load(fname_model, map_location="cpu")
process_and_write_variables(fout, model, ftype, part_id, n_parts)
del model

print(f"Done. Output file: {fname_out}\n")

if __name__ == "__main__":
main()
Loading

0 comments on commit 78ca983

Please sign in to comment.