This repository contains code to detect and measure renal cysts on abdominal ultrasound images.
For prediction and UNet++ training, this project requires
- cuda8
- python3.6
- numpy
- opencv-python
- matplotlib
- h5py==2.10.0
- Keras==2.2.2
- tensorflow-gpu==1.4.0 #tensorflow-gpu==1.4.1
- scikit-image
- pytorch-lightning
- torch
- torchvision
- pandas
- seaborn
See the YOLOv5 repository for YOLOv5 training requirements.
RenalCystMeasurement/data
├unetpp
│ ├input
│ │ ├image1.png
│ │ ├image2.png
│ │ ├...
│ │
│ └groundTruth
│ │ ├image1.png
│ │ ├image2.png
│ │ ├...
│
└yolov5
├images
│ ├image1.png
│ ├image2.png
│ ├...
│
└labels
├image1.txt
├image2.txt
├...
{'image1.png': ((x1, y1),(x2, y2)),
'image2.png': [((x1, y1),(x2, y2)),
((x3, y3),(x4, y4)),
((x5, y5),(x6, y6))],
...
}
# prediction
python3.6 prediction.py --source img.png
# train YOLOv5
cd yolov5
python3.6 train.py --epoch 100 --data cyst.yaml --weights yolov5m.pt --img 256 --batch 16
# generate heatmap for UNet++
python3.6 generate_heatmap.py
# train UNet++
python3.6 train_unetpp.py