Skip to content

blackbean001/llm_evaluator

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Intro:
A toolkit to evaluate and find the best combination of LLM parameters.
One only needs to edit the config file to run [Perf, Acc, PerfTunning, PerfAnalysis].

Usage:
python3 run.py --config ./config/config.yaml

Must set the following items in the config, other items can be filled as needed:

  1. Model: model_name, model_path, tokenizer_path.
  2. MetricType: select from [Perf, Acc, PerfTunning, PerfAnalysis].
  3. EvalTool: select from [BenchmarkTest, BenchmarkServing, OpenCompass, lm_eval, EvalScope].
  4. InferType: select from [offline, serving].

Functions:

  1. Perf: BenchmarkTest, BenchmarkServing, Evalscope
  2. Acc: OpenCompass, BenchmarkTest, lm_eval
  3. PerfTunning:
    (1) BenchmarkTest(tunning params: num_prompts + EngineArgs).
    (2) BenchmarkServing (tunning params: request_rate, num_prompts + EngineArgs).

Notes:

  1. PerfTunning only supports grid searching with given min max. Possibly add other methods (bisection...).

About

an easy-to-use toolkit to evaluate llm models

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published