Skip to content

About the role of PCA #1

@CS123n

Description

@CS123n

Hi, congratulations on your excellent job!

def upsampling_fn(x, alpha, sigma, dataset):
base_resolution = base_resolutions[dataset]
curr_resolution = x.shape[-1]
n = int(np.log2(base_resolution / curr_resolution))
x = repeat(upsample, x, n)
std = np.sqrt(sigma**2 + alpha**2 * stds[dataset][curr_resolution]**2)
noise = torch.normal(mean=0, std=std, size=x.shape, device=x.device)
noise = noise - repeat(upsample, repeat(downsample, noise, n), n)
return x + noise

I find that the upsampling_fn just increases the resolution of the input. I want to know whether the PCA analysis is useful in this process.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions