Skip to content

Remove triton.ops, copy necessary bits here #1413

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Dec 17, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion bitsandbytes/triton/int8_matmul_mixed_dequantize.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,8 @@ def int8_matmul_mixed_dequantize(a, b, state_x, state_w, bias):
else:
import triton
import triton.language as tl
from triton.ops.matmul_perf_model import early_config_prune, estimate_matmul_time

from .matmul_perf_model import early_config_prune, estimate_matmul_time

# This is a matmul kernel based on triton.ops.matmul
# It is modified to support rowwise quantized input and global quantized weight
Expand Down
3 changes: 2 additions & 1 deletion bitsandbytes/triton/int8_matmul_rowwise_dequantize.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,8 @@ def int8_matmul_rowwise_dequantize(a, b, state_x, state_w, bias):
else:
import triton
import triton.language as tl
from triton.ops.matmul_perf_model import early_config_prune, estimate_matmul_time

from .matmul_perf_model import early_config_prune, estimate_matmul_time

# This is a matmul kernel based on triton.ops.matmul
# It is modified to support rowwise quantized input and columnwise quantized weight
Expand Down
211 changes: 211 additions & 0 deletions bitsandbytes/triton/matmul_perf_model.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,211 @@
# Adapted from https://github.com/triton-lang/kernels/blob/eeeebdd8be7d13629de22d600621e6234057eed3/kernels/matmul_perf_model.py
# https://github.com/triton-lang/kernels is licensed under the MIT License.

import functools
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This file should have a reference comment to the triton upstream it was copies from, as well as suitable license attribution.

Suggested change
import functools
# Adapted from https://github.com/triton-lang/kernels/blob/eeeebdd8be7d13629de22d600621e6234057eed3/kernels/matmul_perf_model.py
# https://github.com/triton-lang/kernels is licensed under the MIT License.
import functools

should probably be enough.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Done!

import heapq

import torch

from triton import cdiv
from triton.runtime import driver
from triton.testing import (
get_dram_gbps,
get_max_simd_tflops,
get_max_tensorcore_tflops,
nvsmi,
)


@functools.lru_cache
def get_clock_rate_in_khz():
try:
return nvsmi(["clocks.max.sm"])[0] * 1e3
except FileNotFoundError:
import pynvml

pynvml.nvmlInit()
handle = pynvml.nvmlDeviceGetHandleByIndex(0)
return pynvml.nvmlDeviceGetMaxClockInfo(handle, pynvml.NVML_CLOCK_SM) * 1e3


def get_tensorcore_tflops(device, num_ctas, num_warps, dtype):
"""return compute throughput in TOPS"""
total_warps = num_ctas * min(num_warps, 4)
num_subcores = driver.active.utils.get_device_properties(device)["multiprocessor_count"] * 4 # on recent GPUs
tflops = (
min(num_subcores, total_warps)
/ num_subcores
* get_max_tensorcore_tflops(dtype, get_clock_rate_in_khz(), device)
)
return tflops


def get_simd_tflops(device, num_ctas, num_warps, dtype):
"""return compute throughput in TOPS"""
total_warps = num_ctas * min(num_warps, 4)
num_subcores = driver.active.utils.get_device_properties(device)["multiprocessor_count"] * 4 # on recent GPUs
tflops = (
min(num_subcores, total_warps) / num_subcores * get_max_simd_tflops(dtype, get_clock_rate_in_khz(), device)
)
return tflops


def get_tflops(device, num_ctas, num_warps, dtype):
capability = torch.cuda.get_device_capability(device)
if capability[0] < 8 and dtype == torch.float32:
return get_simd_tflops(device, num_ctas, num_warps, dtype)
return get_tensorcore_tflops(device, num_ctas, num_warps, dtype)


def estimate_matmul_time(
# backend, device,
num_warps,
num_stages, #
A,
B,
C, #
M,
N,
K, #
BLOCK_M,
BLOCK_N,
BLOCK_K,
SPLIT_K, #
debug=False,
**kwargs, #
):
"""return estimated running time in ms
= max(compute, loading) + store"""
device = torch.cuda.current_device()
dtype = A.dtype
dtsize = A.element_size()

num_cta_m = cdiv(M, BLOCK_M)
num_cta_n = cdiv(N, BLOCK_N)
num_cta_k = SPLIT_K
num_ctas = num_cta_m * num_cta_n * num_cta_k

# If the input is smaller than the block size
M, N = max(M, BLOCK_M), max(N, BLOCK_N)

# time to compute
total_ops = 2 * M * N * K / (1024 * 1024 * 1024) # GOPS
tput = get_tflops(device, num_ctas, num_warps, dtype)
compute_ms = total_ops / tput

# time to load data
num_sm = driver.active.utils.get_device_properties(device)["multiprocessor_count"]
active_cta_ratio = min(1, num_ctas / num_sm)
active_cta_ratio_bw1 = min(1, num_ctas / 32) # 32 active ctas are enough to saturate
active_cta_ratio_bw2 = max(min(1, (num_ctas - 32) / (108 - 32)), 0) # 32-108, remaining 5%
dram_bw = get_dram_gbps(device) * (active_cta_ratio_bw1 * 0.95 + active_cta_ratio_bw2 * 0.05) # in GB/s
l2_bw = dram_bw * 4 # rough estimation (should be 4.7 for A100?)
# assume 80% of (following) loads are in L2 cache
load_a_dram = M * K * dtsize * (1 + 0.2 * (num_cta_n - 1))
load_a_l2 = M * K * dtsize * 0.8 * (num_cta_n - 1)
load_b_dram = N * K * dtsize * (1 + 0.2 * (num_cta_m - 1))
load_b_l2 = N * K * dtsize * 0.8 * (num_cta_m - 1)
# total
total_dram = (load_a_dram + load_b_dram) / (1024 * 1024) # MB
total_l2 = (load_a_l2 + load_b_l2) / (1024 * 1024)
# loading time in ms
load_ms = total_dram / dram_bw + total_l2 / l2_bw

# estimate storing time
store_bw = dram_bw * 0.6 # :o
store_c_dram = M * N * dtsize * SPLIT_K / (1024 * 1024) # MB
if SPLIT_K == 1:
store_ms = store_c_dram / store_bw
else:
reduce_bw = store_bw
store_ms = store_c_dram / reduce_bw
# c.zero_()
zero_ms = M * N * 2 / (1024 * 1024) / store_bw
store_ms += zero_ms

total_time_ms = max(compute_ms, load_ms) + store_ms
if debug:
print(
f"Total time: {total_time_ms}ms, compute time: {compute_ms}ms, "
f"loading time: {load_ms}ms, store time: {store_ms}ms, "
f"Activate CTAs: {active_cta_ratio*100}%"
)
return total_time_ms


def early_config_prune(configs, named_args, **kwargs):
device = torch.cuda.current_device()
capability = torch.cuda.get_device_capability()
# BLOCK_M, BLOCK_N, BLOCK_K, SPLIT_K, num_warps, num_stages
dtsize = named_args["A"].element_size()
dtype = named_args["A"].dtype

# 1. make sure we have enough smem
pruned_configs = []
for config in configs:
kw = config.kwargs
BLOCK_M, BLOCK_N, BLOCK_K, num_stages = (
kw["BLOCK_M"],
kw["BLOCK_N"],
kw["BLOCK_K"],
config.num_stages,
)

max_shared_memory = driver.active.utils.get_device_properties(device)["max_shared_mem"]
required_shared_memory = (BLOCK_M + BLOCK_N) * BLOCK_K * num_stages * dtsize
if required_shared_memory <= max_shared_memory:
pruned_configs.append(config)
configs = pruned_configs

# Some dtypes do not allow atomic_add
if dtype not in [torch.float16, torch.float32]:
configs = [config for config in configs if config.kwargs["SPLIT_K"] == 1]

# group configs by (BLOCK_M,_N,_K, SPLIT_K, num_warps)
configs_map = {}
for config in configs:
kw = config.kwargs
BLOCK_M, BLOCK_N, BLOCK_K, SPLIT_K, num_warps, num_stages = (
kw["BLOCK_M"],
kw["BLOCK_N"],
kw["BLOCK_K"],
kw["SPLIT_K"],
config.num_warps,
config.num_stages,
)

key = (BLOCK_M, BLOCK_N, BLOCK_K, SPLIT_K, num_warps)
if key in configs_map:
configs_map[key].append((config, num_stages))
else:
configs_map[key] = [(config, num_stages)]

pruned_configs = []
for k, v in configs_map.items():
BLOCK_M, BLOCK_N, BLOCK_K, SPLIT_K, num_warps = k
if capability[0] >= 8:
# compute cycles (only works for ampere GPUs)
mmas = BLOCK_M * BLOCK_N * BLOCK_K / (16 * 8 * 16)
mma_cycles = mmas / min(4, num_warps) * 8

ldgsts_latency = 300 # Does this matter?
optimal_num_stages = ldgsts_latency / mma_cycles

# nearest stages, prefer large #stages
nearest = heapq.nsmallest(
2,
v,
key=lambda x: (
10 + abs(x[1] - optimal_num_stages)
if (x[1] - optimal_num_stages) < 0
else x[1] - optimal_num_stages
),
)

for n in nearest:
pruned_configs.append(n[0])
else: # Volta & Turing only supports num_stages <= 2
random_config = v[0][0]
random_config.num_stages = 2
pruned_configs.append(random_config)
return pruned_configs