-
-
Notifications
You must be signed in to change notification settings - Fork 777
Description
╭───────────────────── Traceback (most recent call last) ──────────────────────╮
│ /content/kohya-trainer/train_network.py:752 in │
│ │
│ 749 │ args = parser.parse_args() │
│ 750 │ args = train_util.read_config_from_file(args, parser) │
│ 751 │ │
│ ❱ 752 │ train(args) │
│ 753 │
│ │
│ /content/kohya-trainer/train_network.py:252 in train │
│ │
│ 249 │ train_dataset_group.set_max_train_steps(args.max_train_steps) │
│ 250 │ │
│ 251 │ # lr schedulerを用意する │
│ ❱ 252 │ lr_scheduler = train_util.get_scheduler_fix(args, optimizer, accel │
│ 253 │ │
│ 254 │ # 実験的機能:勾配も含めたfp16学習を行う モデル全体をfp16にする │
│ 255 │ if args.full_fp16: │
│ │
│ /content/kohya-trainer/library/train_util.py:2602 in get_scheduler_fix │
│ │
│ 2599 │ name = SchedulerType(name) │
│ 2600 │ schedule_func = TYPE_TO_SCHEDULER_FUNCTION[name] │
│ 2601 │ if name == SchedulerType.CONSTANT: │
│ ❱ 2602 │ │ return wrap_check_needless_num_warmup_steps(schedule_func(opt │
│ 2603 │ │
│ 2604 │ # All other schedulers require num_warmup_steps
│
│ 2605 │ if num_warmup_steps is None: │
│ │
│ /content/kohya-trainer/library/train_util.py:2574 in │
│ wrap_check_needless_num_warmup_steps │
│ │
│ 2571 │ │
│ 2572 │ def wrap_check_needless_num_warmup_steps(return_vals): │
│ 2573 │ │ if num_warmup_steps is not None and num_warmup_steps != 0: │
│ ❱ 2574 │ │ │ raise ValueError(f"{name} does not require num_warmup_st │ │ 2575 │ │ return return_vals │ │ 2576 │ │ │ 2577 │ # using any lr_scheduler from other library │ ╰──────────────────────────────────────────────────────────────────────────────╯ ValueError: SchedulerType.CONSTANT does not require
num_warmup_steps`. Set None
or 0.
╭───────────────────── Traceback (most recent call last) ──────────────────────╮
│ /usr/local/bin/accelerate:8 in │
│ │
│ 5 from accelerate.commands.accelerate_cli import main │
│ 6 if name == 'main': │
│ 7 │ sys.argv[0] = re.sub(r'(-script.pyw|.exe)?$', '', sys.argv[0]) │
│ ❱ 8 │ sys.exit(main()) │
│ 9 │
│ │
│ /usr/local/lib/python3.10/dist-packages/accelerate/commands/accelerate_cli.p │
│ y:45 in main │
│ │
│ 42 │ │ exit(1) │
│ 43 │ │
│ 44 │ # Run │
│ ❱ 45 │ args.func(args) │
│ 46 │
│ 47 │
│ 48 if name == "main": │
│ │
│ /usr/local/lib/python3.10/dist-packages/accelerate/commands/launch.py:1104 │
│ in launch_command │
│ │
│ 1101 │ elif defaults is not None and defaults.compute_environment == Com │
│ 1102 │ │ sagemaker_launcher(defaults, args) │
│ 1103 │ else: │
│ ❱ 1104 │ │ simple_launcher(args) │
│ 1105 │
│ 1106 │
│ 1107 def main(): │
│ │
│ /usr/local/lib/python3.10/dist-packages/accelerate/commands/launch.py:567 in │
│ simple_launcher │
│ │
│ 564 │ process = subprocess.Popen(cmd, env=current_env) │
│ 565 │ process.wait() │
│ 566 │ if process.returncode != 0: │
│ ❱ 567 │ │ raise subprocess.CalledProcessError(returncode=process.return │
│ 568 │
│ 569 │
│ 570 def multi_gpu_launcher(args): │
╰──────────────────────────────────────────────────────────────────────────────╯
CalledProcessError: Command '['/usr/bin/python3',
'/content/kohya-trainer/train_network.py', '--output_name=huajianima',
'--pretrained_model_name_or_path=/content/pretrained_model/realdosmix_.safetenso
rs', '--vae=/content/vae/stablediffusion.vae.pt',
'--train_data_dir=/content/drive/MyDrive/bbbb',
'--in_json=/content/training_dir/meta_lat.json',
'--output_dir=/content/training_dir/output', '--network_dim=128',
'--network_alpha=128', '--network_module=networks.lora', '--unet_lr=0.0001',
'--text_encoder_lr=5e-05', '--optimizer_type=AdamW8bit',
'--learning_rate=2e-06', '--lr_scheduler=constant', '--lr_warmup_steps=250',
'--dataset_repeats=10', '--resolution=512', '--lowram',
'--mixed_precision=fp16', '--save_precision=fp16', '--save_n_epoch_ratio=3',
'--save_model_as=safetensors', '--train_batch_size=4', '--max_token_length=225',
'--max_train_epochs=34000', '--clip_skip=2',
'--logging_dir=/content/training_dir/logs', '--log_prefix=huajianima',
'--shuffle_caption', '--xformers']' returned non-zero exit status 1.